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1 Econometrics

1.1 Probability foundations

Basic set theory (C&B 1.1.4) All sets A,B,C satisfy:

1. Commutativity: A ∪B = B ∪A and A ∩B = B ∩A;

2. Associativity: A∪ (B ∪C) = (A∪B)∪C and A∩ (B ∩
C) = (A ∩B) ∩ C;

3. Distributive laws: A∩ (B ∪C) = (A∩B)∪ (A∩C) and
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

4. DeMorgan’s Laws: (A∪B)C = AC∩BC and (A∩B)C =
AC ∪BC.

Disjointness (C&B 1.1.5) Two events are disjoint (a.k.a. mutually
exclusive) iff A∩B = ∅. Events {Ai} are pairwise disjoint or
mutually exclusive iff Ai ∩Aj = ∅ for all i 6= j. Two events
with nonzero probability cannot be both mutually exclusive
and independent (see ex. 1.39).

Partition (C&B 1.1.6) A1, A2, . . . is a partition of S iff:

1. S =
⋃
i Ai (i.e., covering);

2. A1, A2, . . . are pairwise disjoint (i.e., non-overlapping).

Sigma algebra (C&B 1.2.1) Collection of subsets of S (i.e., a subset
of the power set of S) is a sigma algebra, denoted B iff:

1. ∅ ∈ B;

2. If A ∈ B, then AC ∈ B (closed under
complementation—along with first axiom gives S ∈ B);

3. If {Ai} ⊆ B, then
⋃
i Ai ∈ B (closed under countable

unions).

A cdf completely determines the probability distribution of
a random variable if its probability function is defined only
for events in the Borel field B1, the smallest sigma algebra
containing all the intervals of real numbers of the form (a, b),
[a, b), (a, b], [a, b]. If probabilities are defined for a larger class
of events, two random variables may have the same cdf but
not the same probability for every event (see C&B p. 33).

Probability function (C&B 1.2.4, 8–9, 11) Given a sample space S
and associated sigma algebra B, a function P : B → R is a
probability function iff it satisfies the Kolmogorov Axioms
or Axioms of Probability:

1. P (A) ≥ 0 for all A ∈ B;

2. P (S) = 1;

3. If {Ai} ⊆ B are pairwise disjoint, then P (
⋃
i Ai) =∑

i P (Ai) (countable additivity for pairwise disjoint
sets).

For any probability function P and A, B ∈ B,

1. P (∅) = 0;

2. P (A) ≤ 1;

3. P (AC) = 1− P (A);

4. P (B∩AC) = P (B)−P (A∩B) (B but not A is B minus
both A and B);

5. P (A ∪B) = P (A) + P (B)− P (A ∩B);

6. If A ⊆ B, then P (A) ≤ P (B).

If {Ci} partitions A, then P (A) =
∑
i P (A ∩ Ci).

Probability space (Hansen 1-31, 1-28) (Ω,F , P ) where:

1. Ω is the universe (e.g., S, the sample space);

2. F is the σ-field (e.g., B1);

3. P a probability measure (e.g., P, the probability mea-
sure that governs all random variables).

A random variable X induces a probability measure PX de-
fined by PX(B) ≡ P (X ∈ B) = P (F ). This gives the prob-
ability space (R,B, PX).

Counting (C&B sec. 1.2.3) The number of possible arrangement of
size r from n objects is

No replacement With replacement

Ordered n!
(n−r)! nr

Unordered
(n
r

) (n+r−1
r

)
where

(n
r

)
≡ n!

r!(n−r)! . (Unordered with replacement, a.k.a.

“stars and bars.”)

Conditional probability (C&B 1.3.2, ex. 1.38) For A, B ∈ S with
P (B) > 0, the conditional probability of A given B is
P (A|B) ≡ P (A ∩B)/P (B).

1. If A and B are disjoint (A ∩ B = ∅), then P (A|B) =
P (B|A) = 0.

2. If P (B) = 1, then ∀A,P (A|B) = P (A).

3. If A ⊆ B, then P (B|A) = 1 and P (A|B) = P (A)/P (B).

4. If A and B are mutually exclusive, P (A|A ∪ B) =
P (A)/[P (A) + P (B)].

5. P (A ∩B ∩ C) = P (A|B ∩ C) · P (B|C) · P (C).

Bayes’ Rule (C&B 1.3.5) A formula for “turning around” condi-
tional probabilities: P (A|B) = P (B|A) · P (A)/P (B). More
generally, if {Ai} partition the sample space and B is any
set, then ∀i,

P (Ai|B) =
P (B|Ai) · P (Ai)∑
j P (B|Aj) · P (Aj)

.

Independence of events (C&B 1.3.7, 9, 4.2.10) A, B statistically
independent iff P (A ∩ B) = P (A) · P (B) or identically iff
P (A|B) = P (A) (this happens iff P (B|A) = P (B)).

1. Iff A and B are independent, then the following pairs
are also independent: A and BC, AC and B, AC and
BC.

2. Two events with nonzero probability cannot be both
mutually exclusive and independent (see ex. 1.39).

3. If X, Y independent r.v.s, then for any A, B ⊆ R,
events {X ∈ A} and {Y ∈ B} are independent events.

Mutual independence of events (C&B 1.3.12) A collection of
events {Ai} are mutually independent iff for any subcollec-
tion Ai1 , . . . , Aik we have P (

⋂
j Aij ) =

∏
j P (Aij ). Note

that pairwise independence does not imply mutual indepen-
dence.
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1.2 Random variables

Random variable (1.4.1, 1.5.7–8, 10, sec. 3.2) A function X : S → R
where S is a sample space.

1. Continuous iff its cdf is a continuous function and dis-
crete iff its cdf is a step function (i.e., if sample space
is countable).

2. Identically distributed iff ∀A ∈ B1, P (X ∈ A) = P (Y ∈
A), or identically iff ∀x, FX(x) = FY (x).

3. Note identical distribution says nothing about
(in)dependence.

Random vector (C&B 4.1.1) n-dimensional random vector is a
function X : S → Rn where S is a sample space.

Measurability (Hansen 1-28, 4-11) A r.v. X : (Ω,F)→ (R,B) is F-
measurable iff ∀B ∈ B, {ω ∈ Ω: X(ω) ∈ B} ∈ F (i.e., the
preimage of every element of B is an element of F).

If F and G are both σ-fields with G ⊆ F , then X is G-
measurable =⇒ X is F-measurable (i.e., if the preimage of
every B is in G, it is also in its superset F).

Smallest σ-field (Hansen 4-12) The smallest σ-field that makes a
r.v. Z : (Ω,F)→ (R,B) measurable is σ(Z) ≡ {G ⊆ Ω: ∃B ∈
B, G = Z−1(B)} (i.e., the set of preimages of elements of
B).

Independence of r.v.s (C&B 4.2.5, 7, p. 154, 4.3.5) X and Y inde-
pendent r.v.s (written X ⊥⊥ Y ) iff any of the following equiv-
alent conditions hold:

1. ∀A, B, P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

2. FXY (x, y) ≡ P (X ≤ x, Y ≤ y) = FX(x)FY (y).

3. f(x, y) = fX(x)fY (y) (i.e., joint pdf/pmf is the product
of marginal pdfs/pmfs).

4. f(y|x) = fY (y) (i.e., conditional pdf/pmf equals
marginal pdf/pmf).

5. ∃g(x), h(y), ∀x, y, f(x, y) = g(x)h(y) (i.e., joint
pdf/pmf is separable). Note that functional forms may
appear separable, but limits may still depend on the
other variable; if the support set of (X,Y ) is not a cross
product, then X and Y are not independent.

For any functions g(t) and h(t), X ⊥⊥ Y =⇒ g(X) ⊥⊥ h(Y ).

Independence of random vectors (C&B 4.6.5) X1, . . . ,Xn mu-
tually independent iff for every (x1, . . . ,xn), the joint
pdf/pmf is the product of the marginal pdfs/pmfs; i.e.,
f(x1, . . . ,xn) =

∏
i fXi (xi).

1. Knowledge about the values of some coordinates gives
us no information about the values of the other coordi-
nates.

2. The conditional distribution of any subset of the coor-
dinates, given the values of the rest of the coordinates,
is the same as the marginal distribution of the subset.

3. Mutual independence implies pairwise independence,
but pairwise independence does not imply mutual in-
dependence.

Mean independence (Metrics P.S. 3-4c, Metrics section) X is mean
independent of Y (written X ⊥⊥mY ) iff E(X|Y ) = E(X).

1. Mean independence is not transitive (i.e., X ⊥⊥mY does
not imply that Y ⊥⊥mX).

2. Independence implies mean independence (i.e., X ⊥⊥
Y =⇒ X ⊥⊥mY ∧ Y ⊥⊥mX).

3. X ⊥⊥mY =⇒ E[(X|g(Y )] = E[X], for any function
g(·).

4. X ⊥⊥mY =⇒ Cov(X, g(Y )) = 0 for any function g(·).

Cumulative distribution function (C&B 1.5.1, 3, p. 147)

FX(x) ≡ P (X ≤ x). By the Fundamental Theorem of
Calculus, d

dx
FX(x) = fX(x) for a continuous r.v. at conti-

nuity points of fX . A function F is a cdf iff:

1. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1;

2. F (·) nondecreasing;

3. F (·) right-continuous; i.e., ∀x0, limx↓x0
F (x) = F (x0).

A random vector X has joint cdf FX(x1, . . . , xn) ≡ P (X1 ≤
x1, . . . , Xn ≤ xn). By the Fundamental Theorem of Calcu-

lus, ∂n

∂x1···∂xn
FX(~x) = fX(~x) for a continuous (in all dimen-

sions) random vector at continuity points of fX .

Probability mass function (C&B 1.6.1, 5, 4.1.3) For a discrete r.v.,
fX(x) ≡ P (X = x). A function fX is a pmf iff:

1. ∀x, fX(x) ≥ 0;

2.
∑
x fX(x) = 1.

fX gives the probability of any event: P (X ∈ B) =∑
k 1(xk∈B)fX(xk).

A discrete random vector X has joint pmf fX(~v) ≡ P (X =
~v).

Marginal pmf (C&B 4.1.6, p. 178) For a discrete random vector,

fXi (xi) ≡ P (Xi = xi) =
∑

x−i∈Rn−1

fX(x);

i.e., hold Xi = xi, and sum fX over all remaining possible
values of X.

We can also take the marginal pmf for multiple i by holding
these and summing fX over all remaining possible values of
X.

Conditional pmf (C&B 4.2.1) For (X,Y ) a discrete random vec-
tor, f(y|x) ≡ P (Y = y|X = x) = f(x, y)/fX(x), where
f(x, y) is joint pmf, and fX(x) is marginal pmf.

Probability density function (C&B 1.6.3, 5, 4.1.10) For a con-
tinuous r.v., fX(x) defined as the function which satisfies
FX(x) =

∫ x
−∞ fX(t) dt for all x. A function fX is a pdf iff:

1. ∀x, fX(x) ≥ 0;

2.
∫
R fX(x) dx = 1.

fX gives the probability of any event: P (X ∈ B) =∫
R 1(x∈B)fX(x) dx.

A continuous (in all dimensions) random vector X has
joint pdf fX(x1, . . . , xn) iff ∀A ⊆ Rn, P (X ∈ A) =∫
· ··
∫
A fX(x1, . . . , xn) dx1 · · · dxn.

Marginal pdf (C&B p. 145, 178) For a continuous (in all dimen-
sions) random vector,

fXi (xi) ≡
∫
· · ·
∫
Rn−1

fX(x) dx1 · · · dxi−1 dxi+1 · · · dxn,

i.e., hold Xi = xi, and integrate fX over R in all Xj for
i 6= j.

We can also take the marginal pdf for multiple i by holding
these and integrating fX over R in all Xj that aren’t being
held.

Conditional pdf (C&B 4.2.3, p. 178) For (X,Y ) a continuous ran-
dom vector, f(y|x) ≡ f(x, y)/fX(x) as long as fX(x) 6= 0,
where f(x, y) is joint pdf, and fX(x) is marginal pdf.

We can also condition for/on multiple coordinates:
e.g., for (X1, X2, X3, X4) a continuous random vector,
f(x3, x4|x1, x2) ≡ f(x1, x2, x3, x4)/fX1X2

(x1, x2), where f
is a joint pdf, and fX1X2 is the marginal pdf in X1 and X2.

Borel Paradox (4.9.3) Be careful when we condition on events of
probability zero: two events of probability zero may be equiv-
alent, but the probabilities conditional on the two events is
different!

Stochastic ordering (C&B ex. 1.49, ex. 3.41-2) cdf FX stochastically
greater than cdf FY iff FX(t) ≤ FY (t) at all t, with strict
inequality at some t. This implies P (X > t) ≥ P (Y > t) at
all t, with strict inequality at some t.

A family of cdfs {F (x|θ)} is stochastically increasing in θ iff
θ1 > θ2 =⇒ F (x|θ1) stochastically greater than F (x|θ2).
A location family is stochastically increasing in its location
parameter; if a scale family has sample space [0,∞), it is
stochastically increasing in its scale parameter.

Support set (C&B eq. 2.1.7) Support set (a.k.a. support) of a r.v.
X is X ≡ {x : fX(x) > 0}, where fX a cdf or pdf (or in
general, any nonnegative function).
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1.3 Transformations of random variables

Transformation R1 → R1
(C&B 2.1.3, 5, 8) A discrete r.v. can be

transformed into a discrete r.v. A continuous r.v. can be
transformed into either a continuous or a discrete r.v. (or
mixed!). When Y = g(X) and Y ≡ g(X ) (where X is the
support of X),

1. If g monotone increasing on X , then FY (y) =
FX(g−1(y)) for y ∈ Y;

2. If g monotone decreasing on X and X a continuous r.v.,
then FY (y) = 1− FX(g−1(y)) for y ∈ Y.

If g monotone, fX continuous on X , and g−1 has continuous
derivative on Y, then:

fY (y) =

{
fX
(
g−1(y)

) ∣∣∣ ddy g−1(y)
∣∣∣ , y ∈ Y;

0, otherwise.

If {Ai}ki=0 partitions X , with P (X ∈ A0) = 0; fX continu-

ous on each Ai; and ∃{Ai}ki=1 satisfying:

1. g(x) = gi(x) for x ∈ Ai,

2. gi monotone on Ai,

3. ∃Y, ∀i, gi(Ai) = Y (i.e., all Ai have same image un-
der their respective gis) [Hansen note 2-15 suggests this
need not hold],

4. ∀i, g−1
i has a continuous derivative on Y; then:

fY (y) =

{∑k
i=1 fX

(
g−1
i (y)

) ∣∣∣ ddy g−1
i (y)

∣∣∣ , y ∈ Y;

0, otherwise.

Transformation R2 → R2
(C&B p. 158, 185) Let U = g1(X,Y ) and

V = g2(X,Y ) where:

1. (X,Y ) has pdf fXY and support A;

2. g1 and g2 define a 1-to-1 transformation from A to
B ≡ {(u, v) : u ∈ g1(A), v ∈ g2(A)} (i.e., the support of
(U, V ));

3. Inverse transform is X = h1(U, V ) and Y = h2(U, V );
then:

fUV (u, v) =

{
fXY (h1(u, v), h2(u, v)) |J | , (u, v) ∈ B;

0, otherwise;

where J is the Jacobian,

J ≡ det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
.

If the transformation is not 1-to-1, we can partition A into
{Ai} such that 1-to-1 transformations exist from each Ai
to B which map (x, y) 7→ (u, v) appropriately. Letting

x = h1i(u, v) and y = h2i(u, v) be the inverses, and Ji the
Jacobian, on Ai;

fUV (u, v) =

{∑
i fXY (h1i(u, v), h2i(u, v)) |Ji| , (u, v) ∈ B;

0, otherwise.

For generalization to Rn → Rn case for n > 2, see C&B
p. 185.

Convolution formulae (C&B 5.2.9, ex. 5.6) X ⊥⊥ Y both continu-
ous. Then:

1. fX+Y (z) =
∫
R fX(w)fY (z − w) dw.

2. fX−Y (z) =
∫
R fX(w)fY (w − z) dw.

3. fXY (z) =
∫
R |

1
w
|fX(w)fY (z/w) dw.

4. fX/Y (z) =
∫
R |w|fX(wz)fY (w) dw.

Probability integral transformation (C&B 2.1.10, ex. 2.10) If
Y = FX(X) (for X continuous) then Y ∼ Unif(0, 1). Can
be used to generate random samples from a particular dis-
tribution: generate a uniform random and apply inverse of
cdf of target distribution. If X is discrete, Y is stochastically
greater than Unif(0, 1).

1.4 Properties of random variables

Expected value, mean (C&B 2.2.1, 5–6, 4.6.6)

E g(X) ≡
{∫

R g(x)fX(x) dx, if X continuous;∑
x∈X g(x)fX(x) dx, if X discrete;

provided the integral or sum exists and that E |g(X)| 6= ∞.
For constants a, b, c and functions g1, g2 such that E(g1(X)),
E(g2(X)) exist,

1. E[ag1(X) + bg2(X) + c] = aE(g1(X)) + bE(g2(X)) + c
(i.e., expectation is a linear operator);

2. If ∀x, g1(x) ≥ 0, then E g1(X) ≥ 0;

3. If ∀x, g1(x) ≥ g2(x), then E g1(X) ≥ E g2(X);

4. If ∀x, a ≤ g1(x) ≤ b, then a ≤ E g1(X) ≤ b.

The mean is the MSE minimizing predictor for X; i.e.,
minb E(X − b)2 = E(X − EX)2. If X1, . . . , Xn mutually
independent, then E[g1(X1) · · · · · gn(Xn)] = E[g1(X1)] · · · · ·
E[gn(Xn)].

Conditional expectation (C&B p. 150; Hansen 4-14–6; Hayashi 138–9)

a.k.a. regression of Y on X. E(Y |X) is a r.v. which is a func-
tion of X. For discrete (X,Y ), E(g(Y )|x) ≡

∑
Y g(y)f(y|x).

For continuous (X,Y ), E(g(Y )|x) ≡
∫
R g(y)f(y|x) dy. Con-

ditional expected value has all the standard properties of
expected value. Also:

1. E[g(X)|X] = g(X) for any function g.

2. E[g(X)h(Y )|X] = g(X) E[h(Y )|X] for any functions g
and h.

3. X ⊥⊥ Y =⇒ E(Y |X) = E(Y ) (i.e., knowing X gives us
no additional information about EY ).

4. E(Y |X) = E(Y ) =⇒ Cov(X,Y ) = 0

5. E(Y |X) is the MSE minimizing predictor of Y based
on knowledge of X, (i.e., ming(x) E[Y − g(X)]2 =

E[Y − E(Y |X)]2).

Let X be a r.v. that takes values in (R,B), let G = σ(X)
(i.e., the smallest sigma field measuring X), and assume
E |Y | < ∞. Conditional expected value of Y given X, is
defined implicitly (and non-uniquely) as satisfying:

1. E |E(Y |X)| <∞;

2. E(Y |X) is G-measurable (i.e., Y |X cannot rely on more
information than X does);

3. ∀G ∈ G,
∫
G E(Y |X) dP (ω) =

∫
G Y dP (ω) (i.e.,

E[E(Y |X)|X ∈ G] = E[Y |X ∈ G]);

where the notation
∫
B · dPX(x) means

∫
B · fX(x) dx if X is

continuous, and means
∑
x∈B · fX(x) if X is discrete.

Two-way rule for expectations (C&B p. 58, ex. 2.21) If Y =
g(X), then E g(X) = EY ; i.e.,

∫
R g(x)fX(x) dx =∫

R yfY (y) dy.

Law of Iterated Expectations (C&B 4.4.3; Hansen 4-21) EX =
E[E(X|Y )], provided the expectations exist. More generally,
when L ⊆ M (i.e., L contains less information, M contains
more),

E[X|L] = E[E(X|M)|L] = E[E(X|L)|M].

Median (C&B ex. 2.17–18) m such that P (X ≤ m) ≥ 1
2

and

P (X ≥ m) ≥ 1
2

. If X continuous, the median minimizes
absolute deviation; i.e., mina E |X − a| = E |X −m|.

Mode (C&B ex. 2.27) f(x) is unimodal with mode equal to a iff
a ≥ x ≥ y =⇒ f(a) ≥ f(x) ≥ f(y) and a ≤ x ≤ y =⇒
f(a) ≥ f(x) ≥ f(y).

1. Modes are not necessarily unique.

2. If f is symmetric and unimodal, then the point of sym-
metry is a mode.

Symmetric distribution (C&B ex. 2.25–26) If fX is symmetric
about a (i.e., ∀ε, fX(a+ ε) = fX(a− ε)), then:

1. X and 2a−X are identically distributed;

2. If a = 0, then MX is symmetric about 0;

3. a is the median;

4. If EX exists, then EX = a.
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5. For odd k, the kth central moment µk is zero (if it ex-
ists); if the distribution is symmetric about 0, then all
odd moments are zero (if they exist).

Moment (C&B 2.3.1, 11; Hansen 2-37) For n ∈ Z, the nth moment
of X is µ′n ≡ EXn. Also denote µ′1 = EX as µ. The nth
central moment is µn ≡ E(X − µ)n.

1. Two different distributions can have all the same mo-
ments, but only if the variables have unbounded support
sets.

2. A distribution is uniquely determined by its moments
if all moments are defined and limn→∞

∑n
k=1 µ

′
kr
k/k!

exists for all r in a neighborhood of zero.

Variance (C&B 2.3.2, 4, p. 60, 4.5.6, ex. 4.58) VarX ≡ µ2 = E(X −
EX)2 = EX2 − (EX)2. Often parametrized as σ2.

1. For constants a, b, if VarX 6= ∞, then Var(aX + b) =
a2 VarX;

2. Assuming variances exist, Var(aX + bY ) = a2 VarX +
b2 VarY + 2abCov(X,Y );

3. Var[Y − E(Y |X)] = E[Var(Y |X)].

Multivariate variance (?) Var X ≡ E[XX′]−E[X] E[X]′. Thus:

1. Var(X + Y) = Var(X) + Cov(X,Y) + Cov(X,Y)′ +
Var(Y);

2. Var(AX) = A Var(X)A′.

Conditional variance (C&B p. 151, 4.4.7; Greene 81–4) a.k.a. scedas-
tic function. Var(Y |X) ≡ E[(Y −E[Y |X])2|X] = E[Y 2|X]−
(E[Y |X])2.

1. X ⊥⊥ Y =⇒ Var(Y |X) = Var(Y ).

2. Conditional variance identity: provided the expecta-
tions exist,

Var(Y ) = E[Var(Y |X)]︸ ︷︷ ︸
residual variance

+ Var[E(Y |X)]︸ ︷︷ ︸
regression variance

.

Implies that on average, conditioning reduces the vari-
ance of the variable subject to conditioning (Var(Y ) ≥
E[Var(Y |X)]).

Standard deviation (C&B 2.3.2) σ ≡
√

VarX.

Covariance (C&B 4.5.1, 3, ex. 4.58–9; Greene 77) Cov(X,Y ) ≡ E[(X −
EX)(Y − EY )] = E[(X − EX)Y ] = E[X(Y − EY )] =
E(XY ) − (EX)(EY ). If X, Y , Z all have finite variances,
then:

1. Cov(X,Y ) = Cov[X,E(Y |X)];

2. Cov[X,Y − E(Y |X)] = 0;

3. Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov[E(X|Z),E(Y |Z)].

4. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z).

5. Cov(aX+bY, cX+dY ) = acVar(X)+bdVar(Y )+(ad+
bc) Cov(X,Y ).

Multivariate covariance (Hansen 5-28; Hayashi 75–6) Cov(X,Y) ≡
E[(X− E X)(Y − E Y)′] = E(XY′)− (E X)(E Y′). Thus:

1. Cov(AX,BY) = A Cov(X,Y)B′;

2. Cov(X,Y) = Cov(Y,X)′.

Correlation (C&B 4.5.2, 5, 7) Corr(X,Y ) ≡ ρXY ≡
Cov(X,Y )/(σXσY ).

1. Corr(a1X + b1, a2Y + b2) = Corr(X,Y ).

2. Correlation is in the range [−1, 1], with ±1 indicating a
perfectly linear relationship (+1 for positive slope, −1
for negative slope), by the Cauchy-Schwarz Inequality.

3. X ⊥⊥ Y =⇒ Cov(X,Y ) = ρXY = 0 (assuming finite
moments); note however that zero covariance need not
imply independence.

Skewness (C&B ex. 2.28; Greene 66) α3 ≡ µ3 · (µ2)−3/2, where µi is
the ith central moment. Measures the lack of symmetry in
the pdf. 0 for any normal, t, or uniform; 2 for exponential,
2
√

2/r for χ2
r, 2
√
a/a for gamma.

Kurtosis (C&B ex. 2.28) α4 ≡ µ4 · µ−2
2 , where µi is the ith central

moment. Measures the “peakedness” of the pdf. α4 = 3 for
any normal. (Sometimes normalized by subtracting 3.)

Moment generating function (C&B 2.3.6–7, 11–12, 15, 4.2.12, 4.6.7,

9) MX(t) ≡ E etX as long as the expectation exists for t in a
neighborhood 0. If MX exists, then ∀n ∈ Z, n ≥ 0,

µ′n ≡ EXn =
dn

dtn
MX(t)

∣∣∣∣
t=0

.

1. It is possible for all moments to exist, but not the mgf.

2. If r.v.s have equal mgfs in some neighborhood of 0, then
the variables are identically distributed (i.e., an extant
mgf characterizes a distribution).

3. If the mgfs of a sequence of r.v.s converge toMX in some
neighborhood of zero, then the cdfs of the sequence con-
verge to FX at all points where FX is continuous.

4. For constants a, b, if MX exists, then MaX+b(t) =
ebtMX(at).

5. For X ⊥⊥ Y , MX+Y (t) = MX(t)MY (t). For
X1, . . . , Xn mutually independent, M∑

Xi
=
∏
iMXi .

6. For X1, . . . , Xn mutually independent, Z ≡
(a1X1 + b1) + · · · + (anXn + bn), then MZ(t) =
(et(

∑
bi))

∏
iMXi (ait).

Characteristic function (C&B sec. 2.6.2) φX(t) ≡ E eitX , where
i =
√
−1.

1. The cf always exists.

2. A cf completely determines a distribution: if the cfs of a
sequence of r.v.s converge to φX in some neighborhood
of zero, then the cdfs of the sequence converge to FX
at all points where FX is continuous.

3. For X ∼ N(0, 1), φX(t) = e−t
2/2.

4. We can recover probability from a cf: for all a, b such
that P (X = a) = P (X = b) = 0,

P (X ∈ [a, b]) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φX(t) dt.

Other generating functions (C&B sec. 2.6.2) Cumulant generat-
ing function ≡ log[MX(t)], if the mgf exists.

Factorial moment generating function (a.k.a. probability-
generating function when X is discrete) ≡ E tX , if the ex-
pectation exists.

1.5 Distributions

Normal distribution (C&B p. 102–4, 2.1.9, 3.6.5, 4.2.14, 4.3.4, 6, 5.3.3;

Wikipedia) Normal (a.k.a. Gaussian) particularly important
because it is analytically tractable, has a familiar symmetric
bell shape, and CLT shows that it can approximate many
distributions in large samples. If X is normal with mean
(and median) µ and variance σ2, then X ∼ N(µ, σ2) with
pdf

fX(x) =
1

√
2πσ2

e−(x−µ)2/(2σ2) =
1

σ
φ

(
x− µ
σ

)
.

fX has maximum at µ and inflection points at µ ± σ. Mo-
ments are EX = µ, EX2 = µ2 + σ2, EX3 = µ3 + 3µσ2,
EX4 = µ4 + 6µ2σ2 + 3σ4.

Stein’s Lemma: If g(·) is differentiable with E |g′(X)| < ∞,
then E[g(X)(X − µ)] = σ2 E g′(X).

Z ≡ (X − µ)/σ is distributed N(0, 1) (i.e., “standard nor-
mal”). E[Zk] = 0 if k odd, E[Zk] = 1 · 3 · 5 · · · (n − 1) if k
even. CDF denoted Φ(·); pdf is

φ(z) ≡ fZ(z) =
1
√

2π
e−z

2/2.

1. P (|X − µ| ≤ σ) = P (|Z| ≤ 1) ≈ 68.26%;

2. P (|X − µ| ≤ 2σ) = P (|Z| ≤ 2) ≈ 95.44%;

3. P (|X − µ| ≤ 3σ) = P (|Z| ≤ 3) ≈ 99.74%.

Independence and zero-covariance are equivalent for linear
functions of normally distributed r.v.s. If normally dis-
tributed random vectors are pairwise independent, they are
mutually independent.

Given iid sample Xi ∼ N(µ, σ2), log-likelihood is

L(x) = −n
2

log(2π)− n
2

log(σ2)− 1
2σ2

∑
(xi − µ)2.

Many distributions can be generated with manipula-
tions/combinations of normals:
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1. Square of standard normal is χ2
1.

2. If X ∼ N(µ, σ2), Y ∼ N(γ, τ2), and X ⊥⊥ Y , then
X + Y ∼ N(µ + γ, σ2 + τ2) (i.e., independent normals
are additive in mean and variance).

3. The sum and difference of independent normal r.v.s are
independent normal as long as the variances are equal.

4. Ratio of independent standard normals is Cauchy (σ =
1, θ = 0); look for the kernel of the exponential distri-
bution when dividing normals.

Bivariate normal distribution (C&B 4.5.10, ex. 4.45) Parameters
µX , µY ∈ R; σX , σY > 0; ρ ∈ [−1, 1]; and pdf (on R2):

f(x, y) =
(

2πσXσY
√

1− ρ2
)−1

× exp

(
−1

2(1− ρ2)

((
x− µX
σX

)2

−2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2
))

.

1. The marginal distributions of X and Y are N(µX , σ
2
X)

and N(µY , σ
2
Y ) (note marginal normality does not im-

ply joint normality).

2. The correlation between X and Y is ρ.

3. For any constants a and b, the distribution of aX + bY
is N(aµX + bµY , a

2σ2
X + b2σ2

Y + 2abρσXσY ).

4. All conditional distributions of Y given X = x are nor-
mal: Y |X = x ∼

N(µY + ρ(σY /σX)︸ ︷︷ ︸
Cov(X,Y )/σ2

X

(x− µX), σ2
Y (1− ρ2)).

Multivariate normal distribution (Hansen 5-17–35; MaCurdy p. 6;

Greene 94) p-dimensional normal, Np(µ,Σ) has pdf

f(x) = (2π)−
p
2 |Σ|−

1
2 exp

[
− 1

2
(x− µ)′Σ−1(x− µ)

]
,

where µ = E[X] and Σij = Cov(Xi, Xj).

A linear transformation of a normal is normal: if X ∼
Np(µ,Σ), then for any A ∈ Rq×p with full row rank (which
implies q ≤ p), and any b ∈ Rq , we have AX + b ∼
Nq(Aµ+ b,AΣA′). In particular, Σ−1/2(X−µ) ∼ N(0, I),
where Σ−1/2 = (Σ1/2)−1 = HΛ−1/2H′.

The following transformations of X ∼ Np(µ,Σ) are indepen-
dent iff AΣB′ = Cov(AX,BX) = 0:

1. AX ∼ N(Aµ,AΣA′) and BX ∼ N(Bµ,BΣB′),

2. AX ∼ N(Aµ,AΣA′) and X′BX ∼ χ2
rank(BΣ)

(where

BΣ is an idempotent matrix),

3. X′AX ∼ χ2
rank(AΣ)

and X′BX ∼ χ2
rank(BΣ)

(where

AΣ and BΣ are idempotent matrices).

Chi squared distribution (C&B 5.3.2; Hansen 5-29–32; MaCurdy p. 6;

Greene 92) χ2
n (Chi squared with n degrees of freedom) has

mean n and variance 2n. Can be generated from normal:

1. If Z ∼ N(0, 1), then Z2 ∼ χ2
1 (i.e., the square of stan-

dard normal is a chi squared with 1 degree of freedom);

2. If X1, . . . , Xn are independent with Xi ∼ χ2
pi

, then∑
Xi ∼ χ2∑

pi
(i.e., independent chi squared variables

add to a chi squared, and the degrees of freedom add).

3. If X ∼ Nn(µ,Σ), then (X− µ)′Σ−1(X− µ) ∼ χ2
n.

4. If X ∼ Nn(0, I) and Pn×n is an idempotent matrix,
then X′PX ∼ χ2

rank(P)
= χ2

tr(P)
.

5. If X ∼ Nn(0, I) then the sum of the squared deviations
from the sample mean X′MιX ∼ χ2

n−1.

6. If X ∼ Nn(0,Σ) and Bn×nΣ is an idempotent matrix,
then X′BX ∼ χ2

rank(BΣ)
= χ2

tr(BΣ)
.

Student’s t distribution (C&B 5.3.4; Greene 69–70) If X1, . . . , Xn
are iid N(µ, σ2), then

√
n(X̄ − µ)/σ ∼ N(0, 1). However, we

will generally not know σ. Using the sample variance rather
than the true variance gives

√
n(X̄ − µ)/s ∼ tn−1.

Generally, N(0, 1)/
√
χ2
n−1/(n− 1) ∼ tn−1. If a t distribu-

tion has p degrees of freedom, there are only p − 1 defined
moments. t has thicker tails than normal.

t1 is Cauchy distribution (the ratio of two independent stan-
dard normals). t∞ is standard normal.

Snedecor’s F distribution (C&B 5.3.6–8) (χ2
p/p)/(χ

2
q/q) ∼ Fp,q .

The F distribution is also related by transformation with
several other distributions:

1. 1/Fp,q ∼ Fq,p (i.e., the reciprocal of an F r.v. is another
F with the degrees of freedom switched);

2. (tq)2 ∼ F1,q ;

3. (p/q)Fp,q/(1 + (p/q)Fp,q) ∼ beta(p/2, q/2).

Lognormal distribution (C&B p. 625) If X ∼ N(µ, σ2), then
Y ≡ eX is lognormally distributed. (Note: a lognormal is
not the log of a normally distributed r.v.).

EY = eµ+(σ2/2);

VarY = e2(µ+σ2) − e2µ+σ2
.

Exponential families (C&B 3.4; Mahajan 1-5–6, 11) Any family of
pdfs or pmfs that can be expressed as

f(x|θ) = h(x)c(θ) exp

(
k∑
i=1

wi(θ)ti(x)

)
,

where h(x) ≥ 0, {ti(x)} are real-valued functions, c(θ) ≥ 0,
{wi(θ)} are real-valued functions, and the support does not
depend on θ.

Includes normal, gamma, beta, χ2, binomial, Poisson, and
negative binomial. C&B Theorem 3.4.2 gives results that
may help calculate mean and variance using differentiation,
rather than summation/integration.

Can be re-parametrized as:

f(x|η) = h(x)c∗(η) exp

(
k∑
i=1

ηiti(x)

)
,

over “natural parameter space” H ≡ {η =

(η1, . . . , ηk) :
∫
R h(x) exp(

∑k
i=1 ηiti(x)) dx < ∞}, where for

all η ∈ H, we have c∗(η) ≡ [
∫
R h(x) exp(

∑k
i=1 ηiti(x)) dx]−1

to ensure the pdf integrates to 1.

The joint distribution of an iid sample from an exponential
family will also be an exponential family (closure under ran-
dom sampling).

Location and Scale families (C&B 3.5.1–7, p. 121) If f(x) a pdf,
µ, σ constants with σ > 0, then g(x) also a pdf:

g(x) ≡
1

σ
f

(
x− µ
σ

)
.

X ∼ g(x) iff ∃Z ∼ f , X = σZ + µ. Assume X and Z exist;
P (X ≤ x) = P (Z ≤ (x− µ)/σ), and if EZ and VarZ exist,
then EX = σEZ + µ and Var(X) = σ2 VarZ.

1. Family of pdfs f(x − µ) indexed by µ is the “location
family” with standard pdf f(x) and location parameter
µ.

2. Family of pdfs 1
σ
f(x/σ) indexed by σ > 0 is the “scale

family” with standard pdf f(x) and scale parameter σ.
(e.g., exponential.)

3. Family of pdfs 1
σ
f((x− µ)/σ) indexed by µ, and σ > 0

is the “location-scale family” with standard pdf f(x),
location parameter µ, and scale parameter σ. (e.g., uni-
form, normal, double exponential, Cauchy.)

Stable distribution (Hansen 5-15) Let X1, X2 be iid F , and define
Y = aX1 + bX2 + c. Then F is a stable distribution iff ∀a,
b, c, ∃d, e such that dY + e ∼ F .
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1.6 Random samples

Random sample, iid (5.1.1) R.v.s X1, . . . , Xn are a random sam-
ple of size n from population f(x) (a.k.a. n iid r.v.s with
pdf/pmf f(x)) if they are mutually independent, each with
marginal pdf/pmf f(x). By independence, f(x1, . . . , xn) =∏
i f(xi).

Statistic (C&B 5.2.1; Mahajan 1-7) A r.v. Y ≡ T (X1, . . . , Xn), where
T is a real or vector-valued function T (x1, . . . , xn) whose do-
main includes the support of (X1, . . . , Xn). The distribution
of Y is called its sampling distribution.

Alternately, any measurable function of the data (as distinct
from a parameter—a function of the distribution).

Unbiased estimator (Hansen 5-14; C&B 7.3.2) An statistic θ̂ is un-
biased for θ iff Eθ(θ̂) = θ for all θ. That is, if Bias[θ̂] ≡
Eθ θ̂ − θ = 0 for all θ.

Sample mean (C&B 5.2.2, 4, 6–8, 10, p. 216, 5.5.2) X̄ ≡ 1
n

∑
iXi (i.e.,

the arithmetic average of the values in a random sample).
For any real numbers, the arithmetic average minimizes SSR
(i.e., x̄ ∈ argmina

∑
i(xi − a)2).

1. If EXi = µ <∞, then E X̄ = µ (i.e., X̄ is an unbiased
estimator of µ)

2. If VarXi = σ2 <∞, then Var X̄ = σ2/n.

3. If Xi have mgf MX(t), then MX̄(t) = [MX(t/n)]n.

4. (Law of Large Numbers) If {Xi} iid, EXi = µ <∞ and

VarXi = σ2 < ∞, then the series X̄n
as−→ µ (this also

implies convergence in probability, the “Weak” LLN).

The distribution of the Xi, together with n, characterize the
distribution of X̄:

1. If Xi ∼ N(µ, σ2), then X̄ ∼ N(µ, σ2/n).

2. If Xi ∼ gamma(α, β), then X̄ ∼ gamma(nα, β/n).

3. If Xi ∼ Cauchy(θ, σ), then X̄ ∼ Cauchy(θ, σ).

4. If Xi ∼ (1/σ)f((x − µ)/σ) are members of a location-
scale family, then X̄ = σZ̄ + µ, where {Zi}ni=1 is a
random sample with Zi ∼ f(z).

Sample variance (C&B 5.2.3–4, 6; Greene 102–4)

s2 ≡
1

n− 1

∑
i

(Xi − X̄)2 =
1

n− 1

[∑
i

X2
i − nX̄2

]
.

Sample standard deviation is s ≡
√
s2. If Var(Xi) = σ2 <

∞, then E s2 = σ2 (i.e., s2 is an unbiased estimator of σ2).
s2aX = a2s2X .

For any real numbers {xi}ni=1, we have
∑
i(xi − x̄)2 =∑

i x
2
i − nx̄2.

Sample covariance (Greene 102–4)

sXY ≡
1

n− 1

∑
i

(Xi − X̄)(Yi − Ȳ )

=
1

n− 1

[∑
i

XiYi − nX̄Ȳ
]
.

If Cov(Xi, Yi) = σXY < ∞, then E sXY = σXY (i.e., sXY
is an unbiased estimator of σXY ). saX,bY = |ab|sXY .

For any real numbers {xi, yi}ni=1, we have
∑
i(xi − x̄)(yi −

ȳ) =
∑
i xiyi − nx̄ȳ.

Sample correlation (Greene 102–4) rXY ≡ sXY /(sXsY ).

raX,bY = (ab/|ab|)rXY .

Order statistic (C&B 5.4.1–4) The order statistics of a sample
X1, . . . , Xn are the ordered values from X(1) (the sample
minimum) to X(n) (the sample maximum). Thus the sam-
ple median is

M ≡
{
X((n+1)/2), n is odd;
1
2

(X(n/2) +X(n/2+1)), n is even.

If {Xi}ni=1 iid continuous r.v.s, then

FX(j)
(x) =

n∑
k=j

(n
k

)
[FX(x)]k[1− FX(x)]n−k;

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)[FX(x)]j−1[1− FX(x)]n−j .

See C&B 5.4.3 for discrete r.v.

Samples from the normal distribution (C&B 5.3.1, 6) {Xi}ni=1
iid N(µ, σ2) gives:

1. X̄ ⊥⊥ s2 (can also be shown with Basu’s Theorem);

2. X̄ ∼ N(µ, σ2/n);

3. Var(s2) = 2σ4/(n− 1);

4. (n− 1)s2/σ2 ∼ χ2
n−1.

If {Xi}ni=1 iid N(µX , σ
2
X) and {Yi}mi=1 iid N(µY , σ

2
Y ),

s2X/s
2
Y

σ2
X/σ

2
Y

=
s2X/σ

2
X

s2Y /σ
2
Y

∼ Fn−1,m−1.

1.7 Convergence of random variables

Xn
Ls−−→ X

s≥r
��

Xn
as−→ X

!)

Xn
Lr−−→ X

r≥0u}
Xn

p−→ X

��
Xn

d−→ X

See more LLNs and CLTs in “Time-series concepts.”

Convergence in probability (C&B 5.5.1–4, 12; Hansen 5-41; Hayashi

89; D&M 103; MaCurdy p. 9) {Xi}∞i=1 converges in probability to
X iff, ∀ε > 0, limn→∞ P (|Xn −X| ≥ ε) = 0, or equivalently

limn→∞ P (|Xn − X| < ε) = 1. Written as Xn
p−→ X or

Xn −X = op(1) or plimn→∞Xn = X.

1. Convergence in probability is implied by almost sure
convergence or convergence in Lp (for p > 0).

2. Convergence in probability implies convergence in dis-
tribution (but not conversely).

3. (Weak Law of Large Numbers) If {Xi} iid with EXi =

µ <∞ and VarXi = σ2 <∞, then the series X̄n
p−→ µ

(stronger result gives convergence almost surely).

4. (Continuous Mapping Theorem) If Xn
p−→ X and h is a

continuous function, then h(Xn)
p−→ h(X).

5. If EXn → µ and VarXn → 0, then Xn
p−→ µ.

Uniform convergence in probability (Hayashi 456–7; MaCurdy

p. 14; D&M 137) {Qi(θ)}∞i=1 converges in probability to Q0(θ)

iff, supθ∈Θ‖Qn(θ)−Q0(θ)‖ p−→ 0.

That is ∀ε > 0, limn→∞ P (supθ∈Θ‖Qn(θ) −Q0(θ)‖ ≥ ε) =
0, or equivalently limn→∞ P (supθ∈Θ‖Qn(θ)−Q0(θ)‖ < ε) =
1.

This is stronger than pointwise convergence. Uniform con-
vergence in probability is the regularity condition required
to pass plims through functions or to reverse the order of
differentiation and integration.

Little o error notation (D&M 108–13; Hansen 5-42; MathWorld)

Roughly speaking, a function is o(z) iff is of lower asymp-
totic order than z.

f(n) = o(g(n)) iff limn→∞ f(n)/g(n) = 0. If {f(n)} is
a sequence of random variables, then f(n) = op(g(n)) iff
plimn→∞ f(n)/g(n) = 0.

We write Xn −X = op(n−γ) iff nγ(Xn −X)
p−→ 0.
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Big O error notation (D&M 108–13; MathWorld) Roughly speaking,
a function is O(z) iff is of the same asymptotic order as z.

f(n) = O(g(n)) iff |f(n)/g(n)| < K for all n > N and some
positive integer N and some constant K > 0. If {f(n)} is
a sequence of random variables, then f(n) = op(g(n)) iff
plimn→∞ f(n)/g(n) = 0.

Order symbols (D&M 111-2)

O(np)±O(nq) = O(nmax{p,q}).

o(np)± o(nq) = o(nmax{p,q}).

O(np)± o(nq) =

{
O(np), p ≥ q;
o(nq), p < q.

O(np) ·O(nq) = O(np+q).

o(np) · o(nq) = o(np+q).

O(np) · o(nq) = o(np+q).

These identities cover sums, as long as the number of terms
summed is independent of n.

Asymptotic equivalence (D&M 110–1) f(n)
a
= g(n) iff

limn→∞ f(n)/g(n) = 1.

Convergence in Lp (Hansen 5-43–5; Hayashi 90; MaCurdy p. 11)

{Xi}∞i=1 converges in Lp to X iff, limn→∞ E(|Xn−X|p) = 0.
Note this requires the existence of a pth moment. Written

Xn
Lp−−→ X. Convergence in L2 a.k.a. convergence in mean

square/quadratic mean.

1. Convergence in Lp is implied by convergence in Lq for
q ≥ p.

2. Convergence in Lp implies convergence in Lj for j ≤ p.

3. Convergence in Lp (for p > 0) implies convergence in
probability and in distribution (but not conversely).

4. (Continuous Mapping Theorem extension) If Xn
Lp−−→

X and h is a continuous function, then h(Xn)
Lp−−→

h(X).

Convergence in L2 to a constant requires limn→∞ E[(Xn −
X)′(Xn −X)] = limn→∞ Bias2 + Var2 = 0. Thus it is nec-
essary and sufficient that squared bias and squared variance
go to zero.

Almost sure convergence (C&B 5.5.6, 9; Hayashi 89; D&M 106, 131;

MaCurdy p. 10) {Xi}∞i=1 converges in probability to X iff,

∀ε > 0, P (limn→∞ |Xn −X| < ε) = 1. Written Xn
as−→ X.

Also known as strong convergence, or convergence almost
everywhere.

1. Almost sure convergence implies convergence in proba-
bility and in distribution (but not conversely).

2. (Strong Law of Large Numbers) If {Xi} iid with EXi =

µ <∞ and VarXi = σ2 <∞, then the series X̄n
as−→ µ.

3. (Strong Law of Large Numbers, niid) If {Xi} niid with
EXi = 0 and limn→∞ n−2

∑
i VarXi = ∞, then the

series X̄n
as−→ 0.

4. (Continuous Mapping Theorem extension) If Xn
as−→ X

and h is a continuous function, then h(Xn)
as−→ h(X).

Convergence in distribution (C&B 5.5.10–13; Hayashi 90–1; Greene

119–20; D&M 107) {Xi}∞i=1 converges in distribution to X iff,
limn→∞ FXn (x) = FX(x) at all points where FX is contin-

uous. Written as Xn
d−→ X or Xn −X = Op(1) or as “X is

the limiting distribution of Xn.”

1. Convergence in probability is implied by almost sure
convergence, convergence in Lp (for p > 0), or conver-
gence in probability.

2. Convergence in distribution implies convergence in
probability if the series converges to a constant.

Central Limit Theorem for iid samples (C&B 5.5.14–15; Hansen

5-60–65; Hayashi 96) Lindeberg-Levy CLT:
√
n(X̄n − µ)/σ

d−→
N(0, 1) as long as the iid Xis each have finite mean, and fi-
nite, nonzero variance. Note a weaker form requires mgfs of
Xi to exist in a neighborhood of zero.

In multivariate case, iid Xi ∼ (µ,Σ) satisfy
√
n(X̄n − µ)

d−→
N(0,Σ). Proved using Cramér-Wold Device.

We also have CLT for niid samples (Lyapounov’s Theorem),
Ergodic stationary mds CLT, and CLT for MA(∞) processes.

Central Limit Theorem for niid samples (Hansen 5-62; D&M

126; MaCurdy p. 21–2) [Lyapounov’s Theorem] If Xi ∼
niid(µ, σ2

i ) and a (2 + δ)th moment exists for each Xi, then

√
n(X̄n − µ)

d−→ N(0, σ̄2),

where σ̄2 ≡ limn→∞
1
n

∑
i σ

2
i , as long as the iid Xis each

have finite mean, and finite, nonzero variance. Note a weaker
form requires mgfs of Xi to exist in a neighborhood of zero.

Implies that if εi ∼ niid(0, σ2) (with extant (2 + δ)th mo-
ment), and {zi} a series of (non-stochastic) constants, then

n−1/2Z′ε
d−→ N(0, σ2Szz) where Szz ≡ limn→∞

1
n

∑
i z

2
i =

limn→∞
1
n
Z′Z.

Slutsky’s Theorem (C&B 5.5.17; Hayashi 92–3) If Xn
d−→ X and

Yn
p−→ a, where a is a constant, then:

1. YnXn
d−→ aX;

2. Xn + Yn
d−→ X + a.

Delta Method (C&B 5.5.24, 26, 28; Wikipedia; Hayashi 93–4) Let

{Xi}∞i=1 be a sequence of r.v.s satisfying
√
n(Xn − θ)

d−→
N(0, σ2). For a given function g and specific θ, suppose g′(θ)
exists and g′(θ) 6= 0. Then:

√
n[g(Xn)− g(θ)] d−→ N(0, σ2[g′(θ)]2).

If g′(θ) = 0, but g′′(θ) exists and g′′(θ) 6= 0, we can apply

the second-order Delta Method and get n[g(Xn) − g(θ)] d−→
1
2
σ2g′′(θ)χ2

1.

Alternate formulation: If B is an estimator for β then
the variance of a function h(B) ∈ R is Var(h(B)) ≈
∇h(β)′ Var(B)∇h(β). If h(B) is vector-valued, the variance
is H Var(B)H′, where H = ∂h

∂β′ (i.e., Hij ≡ ∂jhi(β)).

1.8 Parametric models

Parametric model (Mahajan 1-1–2) Describe an (unknown) prob-
ability distribution P that is assumed to be a member of a
family of distributions P. We describe P with a parametriza-
tion: a map from a (simpler) space Θ to P such that
P = {Pθ : θ ∈ Θ}. If Θ is a “nice” subset of Euclidean
space, and the mapping Pθ is “smooth,” then P is called a
parametric model. A regular parametric model if either all
Pθ are continuous, or all are discrete.

Parameter (Mahajan 1-2) Mapping from the family of distributions
P to another space (typically a subset of Euclidean Space).
Can be explicitly or implicitly defined.

A function of the distribution (as distinct from a statistic—a
function of the data).

Identification (Mahajan 1-3–4; C&B 11.2.2) A parameter is (point)
identified if it is uniquely determined for every distribution;
i.e., if the mapping is one-to-one. When the parameter is
implicitly defined as the solution to an optimization prob-
lem (e.g., θ(P ) = argmaxb∈Θ Q0(b, P )), identification corre-
sponds to existence of a unique solution to the optimization.

Two elements θ1, θ2 ∈ Θ are observationally equivalent iff
they imply Pθ1 = Pθ2 . Identification of θ means there is
no other element of Θ observationally equivalent to θ; i.e.,
Pθ1 = Pθ2 =⇒ θ1 = θ2.

Identification in exponential families (Mahajan 1-5–6, Metrics

P.S. 5-1) For iid sampling from an exponential family where
ηi(θ) = θi, if the k × k (Fisher Information) matrix

I(θ∗) ≡ E

[(
d log p(x, θ∗)

dθ

)(
d log p(x, θ∗)

dθ

)′]
is nonsingular for every θ∗ ∈ Θ, then θ is identified.

Conditional homoscedasticity (Mahajan 2-17) The assumption
that Var(Y |Z) = σ2; i.e., variance of Y does not depend
on Z.
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Regression model (Mahajan 1-6–7, 3-9 Hayashi 465–6, Metrics P.S. 7-7)

{Yi, Xi}ni=1, where Yi ∈ R the dependent variable (a.k.a. re-

sponse) and Xi ∈ Rd the covariates or explanatory variables.
Possible specifications include:

1. E(Yi|Xi) = g(Xi) for some unknown function g (non-
parametric regression);

2. E(Yi|Xi) = g(X′iθ0) for some unknown θ0 ∈ Rd
and unknown function g (single-index model; semi-
parametric);

3. E(Yi|Xi) = X′iθ0 for some unknown θ0 ∈ Rd;

4. (Yi|Xi) ∼ N(X′iθ0, σ
2) for some unknown θ0 ∈ Rd

and σ2 ∈ R+ (Gaussian regression model; θ0 is iden-

tified and conditional MLE θ̂ = (X′X)−1X′Y is con-
sistent if E(XiX

′
i) is nonsingular, conditional MLE

σ̂2 = 1
n

(Y −Xθ̂)′(Y −Xθ̂)).

Linear regression model with non-stochastic covariates
(Mahajan 1-10–1, 18–9, Metrics P.S. 5-3) For two-dimensional Gaus-
sian regression model with Xi = (1, xi)

′ known. The param-
eter (θ0, σ2) is identified as long as the xi are not all identi-
cal, with complete sufficient statistic (

∑
Yi,
∑
Y 2
i ,
∑
xiYi).

MLE computed in problem set.

Seemingly Unrelated Regressions (Mahajan 2-11, 21)

{Yi, Xi}ni=1 where Yi ∈ Rm and Xi = (X′1i, . . . , X
′
mi)
′ ∈

R(m2). We assume Yi are (multivariate) normal distributed
with means E[Ysi] = x′siβs where βs ∈ Rm and the parame-

ter of interest is β = (β′1, . . . , β
′
m)′ ∈ R(m2).

Probit model (Mahajan 2-12–3, 3-9–10; Hayashi 466) iid {Wi}ni=1 =
{Yi, Zi}ni=1 where Yi ∈ {0, 1} and Yi have conditional dis-
tribution P (Yi = 1|Zi) = Φ(θ′Zi) where Φ(·) is the cdf of
the standard normal. θ is identified and MLE is consistent
if E(ZiZ

′
i) is nonsingular.

Alternate motivation is threshold crossing model: Y ∗i =
θ′Zi − εi where εi ⊥⊥ Zi and standard normal, and Yi =
I{Y ∗i > 0}.

Nonlinear least squares (Mahajan 2-16–7, 3-6–7, 17–9) iid
{Yi, Zi}ni=1 where Yi have conditional expectation E(Y |Z) =
ψ(Z, θ). The parameter θ can also be defined implicitly as
θ = argminb∈Θ E[Y − ψ(Z, b)]2. Identification condition is
that for all b 6= θ, we have P (ψ(Z, b) 6= ψ(Z, θ)) > 0.

See Mahajan 3-17–9 for asymptotic properties, including het-
eroscedasticity robust asymptotic variance matrix

Linear instrumental variables (Mahajan 2-22–3, 3-11–2) Yi =
Xiθ + εi with moment conditions E[(Yi − Xiθ)Zi] = 0 for
random vector Zi. The Zi are “endogenous instruments”
for regressors Xi, endogenous because E εiXi 6= 0. Identifi-
cation condition for θ is E(ZiX

′
i) has full column rank and

that dimension of Zi be at least dimension of Xi.

1.9 Statistics

Sufficient statistic (Mahajan 1-8–10; C&B 6.2.1) T (X) is sufficient
for {Pθ : θ ∈ Θ} (or more compactly for θ) iff the condi-
tional distribution of X given T (X) does not depend on θ;
i.e., p(x|T (X)) = p(x|T (x), θ). Once the value of a sufficient
statistic is known, the sample does not carry any further
information about θ. Useful for:

1. Decision theory: base decision rules on sufficient statis-
tics (for any decision rule, we can always come up with
rule based only on a sufficient statistic that has the same
risk);

2. Dealing with nuisance parameters in hypothesis testing:
find sufficient statistics for the nuisance parameters and
condition decision rules on them;

3. Unbiased estimation: look for unbiased estimators that
are functions of sufficient statistics.

Any one-to-one function of a sufficient statistic is also suf-
ficient. Outside exponential families, it is rare to have a
sufficient statistic of smaller dimension than the data.

Factorization theorem (Mahajan 1-9; C&B 6.2.6) In a regular para-
metric model {Pθ : θ ∈ Θ}, a statistic T (X) (with range T )
is sufficient for θ iff there exists a function g : T × Θ → R
and a function h such that f(x, θ) = g(T (x), θ)h(x) for all x
and θ.

Minimal sufficient statistic (Mahajan 1-12, 19; C&B 6.2.11) T (X) is
minimal sufficient if it is sufficient, and for any other suf-
ficient statistic S(X) we can find a function r such that
T (X) = r(S(X)). This means that a minimal sufficient
statistic induces the coarsest possible partition on the data;
i.e., it has achieved the maximal amount of data reduction
possible while still retaining all information about the pa-
rameter.

Any one-to-one function of a minimal sufficient statistic is
minimal sufficient. If a minimal sufficient statistic exists,
then any complete sufficient statistic is also a minimal suffi-
cient statistic.

Likelihood function (Mahajan 1-13–4) L(x, θ) ≡ p(x, θ). This is
the same as the pdf/pmf, but considered as a function of θ
instead of x.

The likelihood ratio Λ(x, ·) ≡ L(x, ·)/L(x, θ0), where θ0 ∈ Θ
is fixed and known, with the support of Pθ a subset of the
support of Pθ0 for all θ ∈ Θ. The likelihood ratio is minimal
sufficient for θ.

Ancillary statistic (Mahajan 1-14; C&B 6.2.16) S(X) is ancillary for
θ iff the distribution of S(X) does not depend on θ.

It is first-order ancillary iff ES(X) does not depend on θ.

Complete statistic (Mahajan 1-16; C&B 6.2.21, 28) T : X → T is
complete iff for every measurable real function g : T → R
such that ∀θ ∈ Θ, Eθ[g(T )] = 0 implies that g(T ) = 0 almost
everywhere. Equivalently, T is complete if no non-constant
function of T is first-order ancillary.

If a minimal sufficient statistic exists, then any complete
statistic is also a minimal sufficient statistic.

Basu’s theorem (Mahajan 1-19; C&B 6.2.24, 28) If T (X) is a com-
plete minimal sufficient statistic, then T (X) is independent
of every ancillary statistic. Note the minimal wasn’t really
necessary: if a minimal sufficient statistic exists, then any
complete statistic is also a minimal sufficient statistic.

Statistics in exponential families (Mahajan 1-11, 17; C&B

6.2.10, 25) By the factorization theorem, T (X) ≡
(T1(X), . . . , Tk(X)) is sufficient for θ. (N.B. The statis-
tic must contain all the Ti.)

If X is an iid sample, then T (X) ≡
(
∑
i T1(X1), . . . ,

∑
i Tk(Xi)) is a complete statistic if the

set {(η1(θ), . . . , ηk(θ)) : θ ∈ Θ} contains an open set in Rk.
(Usually, all we’ll check is dimensionality.)

1.10 Point estimation

Estimator (Mahajan 2-2) Any measurable function of the data.
Note this must not be a function of any parameters of the
distribution.

Extremum estimator (Hayashi 446) An estimator θ̂ such that
there is a scalar (“objective”) function Qn(θ) such that θ̂
maximizes Qn(θ) subject to θ ∈ Θ ⊆ Rp. The objective
function depends not only on θ, but also on the data (a sam-
ple of size n).

Analogy principle (Mahajan 2-2–3) Consider finding an estimator
that satisfies the same properties in the sample that the pa-
rameter satisfies in the population; i.e., seek to estimate θ(P )
with θ(Pn) where Pn is the empirical distribution which puts
mass 1

n
at each sample point. Note this distribution con-

verges uniformly to P .

Consistent estimator (Mahajan 3-2; Hansen 5-41–2; C&B 10.1.1, 3)

The sequence of estimators {θ̂n}∞n=1 is consistent for θ iff

θ̂n
p−→ θ(P ). The sequence is superconsistent iff θ̂n − θ =

op(n−1/2)). Superconsistency implies consistency.

If limn→∞ Varθ θ̂n = 0 (variance goes to zero) and

limn→∞ Eθ θ̂n = θ (bias goes to zero) for every θ ∈ Θ, then

{θ̂n} is consistent (sufficient, not necessary, by Chebychev’s
Inequality).

Consistency with compact parameter space (Mahajan 3-4–5,

11; Hayashi 457) Let θ̂n ≡ argmaxb∈Θ Qn(W, b) ≡
argmaxb∈Θ Qn(b). (In the last equivalence we have sup-
pressed dependence on the data W.) This covers M-
estimators, MLE, and GMM estimators. Suppose that:
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1. Θ is a compact subset of Rd [generally not satisfied];

2. Qn(b) is continuous in b for any realization of the data
W [“usually easily checked”];

3. Qn(b) is a measurable function of the data for all b ∈ Θ
[generally assumed].

These conditions ensure that θ̂n is well-defined. Suppose
there exists a function Q0(b) such that:

1. Identification: Q0(·) is uniquely (globally) maximized
on Θ at θ ∈ Θ;

2. Uniform convergence: Qn(·) converges uniformly in
probability to Q0(·) [can be verified by checking more
primitive conditions; in particular, for M-estimators a
Uniform Weak LLN will suffice].

Then θ̂n
p−→ θ.

Consistency without compact parameter space (Mahajan 3-

5, 6; Hayashi 458) Let θ̂n ≡ argmaxb∈ΘQn(W, b) ≡
argmaxb∈Θ Qn(b) as above. Suppose that:

1. True parameter θ ∈ interior(Θ);

2. Θ is a convex set;

3. Qn(b) is concave in b for any realization of the data W
[will be true for MLE, since log-likelihood is concave, if
only after a re-parametrization];

4. Qn(b) is a measurable function of the data for all b ∈ Θ.

These conditions ensure that θ̂n is well-defined. Suppose
there exists a function Q0(b) such that:

1. Identification: Q0(·) is uniquely (globally) maximized
on Θ at θ ∈ Θ;

2. Pointwise convergence: Qn(b)
p−→ Q0(b) for all b ∈ Θ.

Then θ̂n exists with probability approaching 1 and θ̂n
p−→ θ.

See Mahajan 3-6 for M-estimators.

Uniform (Weak) Law of Large Numbers (Mahajan 3-6; Hayashi

459) Suppose {Wi}i is ergodic stationary and that:

1. Θ is compact;

2. q(Wi, b) is continuous in b for all Wi;

3. q(Wi, b) is measurable in Wi for all b;

4. EP [supb∈Θ |q(Wi, b)|] <∞.

Then 1
n

∑
i q(Wi, b) converges uniformly to E[q(Wi, b)], and

E[q(Wi, b)] is a continuous function of b.

Asymptotically normal estimator (Mahajan 3-2, 13–4) The se-
quence of estimators {θ̂n}i is (

√
n) asymptotically normal

iff
√
n(θ̂n − θ(P ))

d−→ N(0, V (P )) for some symmetric pos-
itive definite matrix V (P ) (somewhat inaccurately referred

to as the asymptotic variance of θ̂n).

Suppose that

1. θ̂n is consistent for θ;

2. θ ∈ interior(Θ);

3. Qn(b) is twice continuously differentiable in a neighbor-
hood N of θ;

4.
√
n
∂Qn(θ)
∂θ

d−→ N(0,Σ);

5. Uniform convergence of the Hessian: There exists a
matrix H(b) that is continuous and nonsingular at θ
such that

sup
b∈N

∥∥∥∥∂2Qn(b)

∂θ ∂θ′
−H(b)

∥∥∥∥ p−→ 0.

Then
√
n(θ̂n − θ)

d−→ N(0, H(θ)−1ΣH(θ)−1).

Asymptotic variance (C&B 10.1.9) If kn[θ̂n − θ]
d−→ N(0, σ2) for

some sequence of constants {kn}, then σ2 is the asymptotic
variance.

Asymptotically efficient estimator (C&B 10.1.11–2) {σ̂n} is

asymptotically efficient if
√
n[θ̂n − θ]

d−→ N(0, σ2) and σ2

is the CRLB.

Under regularity conditions, the MLE is consistent and
asymptotically efficient.

Maximum Likelihood estimator (Mahajan 2-4–10, 36; Hayashi 448–

9, 463–5) θ̂ ≡ argmaxb∈Θ L(X, b). Equivalently, for iid

data, θ̂ = argmaxb∈Θ
1
n

∑
log p(Xi, b).

∗ Estimating θ =
argmaxb∈Θ EPθ log p(X, b). An M-Estimator with q(Xi, b) ≡
− log p(Xi, b). Note:

1. The identification condition is that the parameter being
estimated is identified.

2. MLE need not always exist, and if they do, need not be
unique.

3. We may not be able to get a closed-form expression for
θ̂, and therefore have to characterize it as the solution
to a maximization problem (or its FOCs).

4. The expected value of (log) likelihood is uniquely max-
imized at the true parameter as long as θ is identified;
i.e., the Kullback-Liebler Divergence

K(b, θ) ≡ Eθ

[
log

(
p(X, θ)

p(X, b)

)]
> 0 for all b 6= θ,

or equivalently, if p(x, b) = p(x, θ) for all x implies that
b = θ.

5. (Invariance property) If θ̂ is an MLE of θ, then h(θ̂) is
an MLE of h(θ).

Consistency for for MLE (Hayashi 463–465; Mahajan 3-8–10) Let
{yt,xt} be ergodic stationary, and let θ̂ be the conditional
MLE that maximizes the average log conditional likelihood
(derived under the assumption that {yt,xt} is iid).

Suppose conditions (specified on Hayashi 464) allow us to

apply a general consistency theorem. Then θ̂
p−→ θ0 despite

the fact that the MLE was derived under the iid assumption.

Asymptotic normality for MLE (Mahajan 3-20–2; C&B 10.1.12;

Hayashi 474–6; D&M 258, 260–3, 270–4) Suppose {Wi} ≡ {Yi, Zi}
is an iid sample, that Z is ancillary for θ, that θ̂n ≡
argmaxb∈Θ

1
n

∑
log p(Yi|Zi, b) ≡ argmaxb∈Θ Qn(b). Define

score s(Wi, b) ≡ ∂ log p(Yi|Zi,b)
∂b

and Hessian H(Wi, b) ≡
∂s(Wi,b)

∂b
=

∂2 log p(Yi|Zi,b)
∂b ∂b′ . Suppose:

1. θ̂n is consistent for θ—generally fails either because
number of parameters increases with sample size, or
model not asymptotically identified (even if it is identi-
fied by any finite sample);

2. θ ∈ interior(Θ);

3. p(Y |Z, b) is twice continuously differentiable in b for any
(Y, Z);

4. E[s(W, θ)] = 0 and −E[H(W, θ)] = E[s(W, θ)s(W, θ)′]
(this is stated as an assumption, but is the Information
Equality and hence holds if its requirements do);

5. 1√
n

∑
s(Wi, θ)

d−→ N(0,Σ) for some Σ > 0;

6. E(supb∈N ‖H(W, b)‖) < ∞, which implies via ULLN
that

sup
b∈N

∥∥∥∥ 1

n

n∑
i=1

H(Wi, b)− E[H(W, b)]

∥∥∥∥ p−→ 0;

7. E[H(W, θ)] is nonsingular (only required at true param-
eter).

Then θ̂n is asymptotically normal with variance I(θ)−1 (note
this is the Fisher information for one observation, not the
joint distribution). The MLE is not necessarily unbiased,
but in the limit the variance attains the CRLB hence MLE
is asymptotically efficient. No GMM estimator can achieve
lower variance.

Estimation of asymptotic variance can either be done by es-
timating the Hessian or the score (either gives a consistent
expression using the Fisher Information Equality).

M-estimator (Mahajan 2-15–6; Hayashi 447) θ̂ ≡
argminb∈Θ

1
n

∑
q(Xi, b) (assuming iid data). Estimating

θ = argminb∈Θ EP q(X, b).

1. MLE is an M-Estimator with q(Xi, b) ≡ − logL(Xi, b).

∗This is “quasi-ML” if used for non-iid data. It can be consistent even for (non-iid) ergodic stationary processes—see Hayashi 464–5.
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2. Sample mean is an M-Estimator with q(Xi, b) ≡ (Xi −
b)2.

Asymptotic normality for M-estimator (Mahajan 3-14–7;

Hayashi 470–4; D&M 593) Suppose {Wi} is an iid sample, that

θ̂n ≡ argmaxb∈Θ
1
n

∑
q(Wi, b) ≡ argmaxb∈Θ Qn(b). De-

fine “score” s(Wi, b) ≡ ∂q(Wi,b)
∂b

and Hessian H(Wi, b) ≡
∂s(Wi,b)

∂b
=

∂2q(Wi,b)
∂b ∂b′ . Suppose:

1. θ̂n is consistent for θ;

2. θ ∈ interior(Θ);

3. q(W, b) is twice continuously differentiable in b for any
W ;

4. 1√
n

∑
s(Wi, θ)

d−→ N(0,Σ) for some Σ > 0;∗

5. E(supb∈N ‖H(W, b)‖) < ∞, which implies via ULLN
that

sup
b∈N

∥∥∥∥ 1

n

n∑
i=1

H(Wi, b)− E[H(W, b)]

∥∥∥∥ p−→ 0;

6. E[H(W, θ)] is nonsingular (only required at true param-
eter).

Then θ̂n is asymptotically normal with variance
(E[H(W, θ)])−1Σ(E[H(W, θ)])−1.

“Under appropriate conditions for a ULLN to apply,” this
variance is estimated by:

V̂ =
[

1
n

∑
H(Wi, θn)

]−1 [
1
n

∑
s(Wi, θn)s(Wi, θn)′

]
︸ ︷︷ ︸

Σ̂[
1
n

∑
H(Wi, θn)

]−1
.

Method of Moments estimator (Mahajan 2-19–20) Suppose iid
data from a parametric model with θ ∈ Rd identified and
the first d moments of Pθ exist: {mj(θ)}dj=1 ≡ {Eθ Xj}dj=1.
Method of Moments estimator gives moments equal to sam-
ple moments:

mj(θ̂) = m̂j ≡
1

n

n∑
i=1

Xj
i for all j ∈ {1, . . . , d}.

Generalized Method of Moments estimator (Mahajan 2-20–1;

Hayashi 447, 468) GMM estimates parameter θ ∈ Rd satisfy-
ing E[m(X, θ)] = 0 where m : X × Θ → Rm a vector of m
moment conditions. If θ is identified, it is the unique solution
to the moment conditions.

When m ≥ d we typically can’t find a θ̂ satisfying all moment
conditions, so instead we seek θ̂ = argminb∈Θ Qn(b) where

Qn(b) ≡
(

1
n

∑
m(Xi, θ)

)′
S
(

1
n

∑
m(Xi, θ)

)

for some specified weight matrix Sm×m symmetric and
positive definite. The quadratic form in S defines a
norm. Correct specification requires orthogonality condition
E[m(Xi, θ)] = 0.

Extremum estimators can typically be thought of as GMM
estimators when we characterize them by FOCs. Includes
MLE and M-estimators that can be characterized by FOCs.

Consistency for GMM estimators (Mahajan 3-10–1; Hayashi 467–

8) Let θ̂n ≡ argmaxb∈Θ Qn(b) (as above), where

Qn(b) = −
1

2

(
1

n

n∑
i=1

m(Xi, b)

)′
Sn

(
1

n

n∑
i=1

m(Xi, b)

)
.

The true parameter satisfies EP [m(W, θ)] = 0 and
hence uniquely maximizes limit function Q0(b) =
− 1

2
E(m(W, b)]′S E(m(W, b)]. Suppose that:

1. Θ is a compact subset of Rd;

2. m(b) is continuous in b for any realization of the data;

3. m(b) is a measurable function of the data for all b ∈ Θ

(this ensures that θ̂ is measurable);

4. The weight matrices Sn converge in probability to some
symmetric positive definite matrix S.

Suppose further that:

1. Identification: E[m(W, b)] 6= 0 for any b 6= θ;

2. Dominance to ensure ULLN applies:
E[supb∈Θ‖m(W, b)‖] <∞.

Then θ̂n
p−→ θ.

Showing identification and dominance for nonlinear GMM is
quite difficult and usually just assumed. If objective function
is concave, we can replace compact Θ; continuous, measur-
able m; and dominance by requirement that E[m(W, b)] exist
and be finite for all b ∈ Θ.

Asymptotic normality for GMM estimator (Mahajan 3-24–6;

Hayashi 478–81) Let θ̂n ≡ argmaxb∈Θ− 1
2

[mn(b)]′Wn[mn(b)] ≡
argmaxb∈Θ Qn(b), where mn(b) ≡ 1

n

∑
m(Xi, bd×1)m×1.

Jacobian Mn(b)d×m ≡ 1
n

∑ ∂m(b)
∂b

=
∂mn(b)
∂b

. Suppose:

1. The matrix Mn(θn)WnMn(b̄n) is invertible;

2.
√
nmn(θ)

d−→ N(0,E[m(X, θ)m(X, θ)′]) ≡ N(0, S(θ))
(by a CLT);

3. Mn(bn)
p−→ E[

∂m(X,θ)
∂b

] ≡M(θ) (by a ULLN);

4. Wn
p−→W .

Then θ̂n is asymptotically normal with variance

[M(θ)WM(θ)′]−1M(θ)WS(θ)WM(θ)′[M(θ)WM(θ)′]−1.

If we choose W = S(θ)−1 (the efficient choice), the asymp-
totic variance reduces to [M(θ)S(θ)−1M(θ)′]−1.

Assuming conditions for ULLN apply, we can estimate terms
using consistent estimators: Ŝ ≡ 1

n

∑
m(Xi, θ̂n)m(Xi, θ̂n)′

and M̂ ≡ 1
n

∑ ∂m(Xi,θ̂n)
∂b

.

Efficient GMM (Mahajan 3-26–7; Hayashi 212–3) Given above GMM
estimator, if W ∗ = S(θ)−1 (the inverse of the variance of the
moment conditions), then the asymptotic variance reduces to
Ve = [M(θ)S(θ)−1M(θ)′]−1.

This is the lowest variance (in the matrix sense) that can be
achieved. Therefore the optimal choice of weighting matrices
is any sequence of random matrices that converge to S−1. A

natural choice is to develop preliminary estimates θ̃n
p−→ θ

(often using the identity as weighting matrix) and generating

Wn =
[

1
n

∑
m(Xi, θ̃n)

∑
m(Xi, θ̃n)′

]−1
.

Under conditions necessary to implement ULLN, Wn
p−→

S−1.

Minimum Distance estimator (Mahajan 2-23–4) Estimator θ̂n ≡
argminb∈Θ gn(b)′Sngn(b) for some square weight matrix Sn.
GMM is a special case where gn are sample averages of some
function.

Asymptotic normality for MD estimator (Mahajan 3-22–

4) Let θ̂n ≡ argmaxb∈Θ− 1
2

[gn(b)]′Wn[gn(b)] ≡
argmaxb∈ΘQn(b). Define Jacobian [transpose of way we

usually write derivatives?] Gn(b) ≡ ∂gn(b)
∂b

. Suppose:

1. The matrix Gn(θn)WnGn(b̄n) is invertible (where b̄n
is a point between θ and θ̂n for which a mean value
expansion holds);

2.
√
ngn(θ)

d−→ N(0, S(θ)) (by a CLT);

3. Gn(bn)
p−→ G(θ) (by a ULLN);

4. Wn
p−→W .

Then θ̂n is asymptotically normal with variance

[G(θ)WG(θ)′]−1G(θ)WS(θ)WG(θ)′[G(θ)WG(θ)′]−1.

If we choose W = S(θ)−1 (the efficient choice), the asymp-
totic variance reduces to [G(θ)S(θ)−1G(θ)′]−1.

Uniformly minimum variance unbiased estimator (Mahajan

2-27–9, Metrics P.S. 6-1; C&B 7.3.7, 17, 19–20, 23, 7.5.1) An unbiased
estimator φ(X) of a quantity g(θ) is a UMVUE (a.k.a. best
unbiased estimator) iff φ has finite variance and for every un-
biased estimator δ(X) of g(θ), we have Varφ(X) ≤ Var δ(X)
for all θ. Note:

∗If {Wi} is non-iid ergodic stationary, then Σ is the long-run variance of {s(Wi, θ)}; Gordin’s conditions are sufficient for this convergence.
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1. Unbiased estimators may not exist;

2. Not every unbiased estimator is a UMVUE;

3. If a UMVUE exists, it is unique;

4. (Rao-Blackwell) If h(X) is an unbiased estimator of
g(θ), and T (X) is a sufficient statistic for θ, then
φ(T ) ≡ E[h(X)|T ] is unbiased for g(θ), and has vari-
ance (weakly) lower than h(X) for all θ—means we only
need consider statistics that are functions of the data
only through sufficient statistics;

5. If φ(T ) is an unbiased estimator of g(θ) and is a func-
tion of a complete statistic T (X), then all other un-
biased estimators that are functions of T are equal to
φ(T ) almost everywhere;

6. (Lehmann-Scheffé) If φ(T ) is a function (only) of a com-
plete statistic T (X), then φ(T ) is the unique UMVUE
of Eφ(T );

7. (Hausman Principle) W is a UMVUE for EW iff it is
uncorrelated with every unbiased estimator of 0 (prac-
tically, impossible to prove, except for the case where
W is a function only of a complete statistic).

Fisher Information (Mahajan 2-30–1, Metrics P.S. 6-3)

I(θ) ≡ Eθ

[(
∂
∂θ

log f(x, θ)
)

︸ ︷︷ ︸
Score

(
∂
∂θ

log f(x, θ)
)′]

.

Fisher information for an iid sample is n times information
for each individual observation. For (univariate) normal,

I(µ, σ2) =

[
σ−2 0

0 1
2
σ−4

]
; I(µ, σ2)−1 =

[
σ2 0
0 2σ4

]
.

Cramér-Rao Inequality (Mahajan 2-30–1, 5; C&B 7.3.9–11, 15) Given
a sample X ∼ f(x|θ) and an estimator φ(X) with Eθ φ(X) =
g(θ), suppose that

1. The support does not depend on θ;

2. pdf f(x|θ) is differentiable in θ almost everywhere;

3. Eθ |φ| < θ (or per C&B, Varθ φ <∞);

4. The operations of differentiation and integration can be
interchanged in d

dθ

∫
φ(x)f(x, θ) dx;

5. Fisher Information I(θ) is nonsingular. Note under pre-
vious conditions,

(a) I(θ) = Varθ[ ∂
∂θ

log f(x, θ)];

(b) If f(·, θ) is twice differentiable and double integra-
tion and differentiation under the integral sign can
be interchanged, then (Fisher Information Equal-
ity):

I(θ) = −E

[
∂2

∂θ ∂θ′
log f(x, θ)

]
.

Then

Varθ φ(X) ≥
(
dg(θ)

dθ

)′
I(θ)−1

(
dg(θ)

dθ

)
.

Attained iff there exists a function a(θ) such that

a(θ)[φ(x)− g(θ)] = ∂
∂θ

log f(x|θ).

1.11 Decision theory

Loss function (Mahajan 2-24–5) We observe x ∈ X with unknown
distribution Pθ ∈ P. Loss function l : P×A → R+ (where A
is the action space), l(Pb, a) gives the loss that occurs if the
statistician chooses action a and the true distribution is Pb.
Common examples when estimating parameter v(P ) include

1. Quadratic loss: l(P, a) ≡ [v(P )− a]2;

2. Absolute value loss: l(P, a) ≡ |v(P )− a|;

3. 0-1 loss: action space is {0, 1} and l(Pθ, a) is zero if
θ ∈ Θa, one otherwise.

Decision rule (Mahajan 2-25) A mapping from the sample space X
to the action space A.

Risk function (Mahajan 2-25) Expected loss (expectation is taken
using the true distribution): R(Pθ, φ) = Eθ[l(Pθ, φ)].

Mean squared error risk function (Mahajan 2-25–6; Greene 109–

11; C&B 7.3.1) If loss function l(·, ·) is quadratic loss, risk
function is MSE risk function: R(Pθ, φ) ≡ Eθ[φ(X) −
g(θ)]2, where g(θ) is the parameter being estimated. Note
R(Pθ, φ) = Biasθ[φ(X)]2 + Varθ[φ(X)].

Typically it is infeasible to minimize MSE, since it depends
on the (presumably unknown) parameter g(θ). So we often
use UMVUE instead.

1.12 Hypothesis testing

Hypothesis testing (Mahajan 4-1–2) We observe data x from dis-
tribution P ∈ P (usually {Pθ : θ ∈ Θ}), and must decide
whether P ∈ PH ⊆ P. The null hypothesis H is that
P ∈ PH ⊆ P, or equivalently θ ∈ ΘH . If PH is a singleton
we call H simple, otherwise composite (identically for K).
The alternate hypothesis K is P ∈ PK ⊆ P (or θ ∈ ΘK),
where PH ∩PK = ∅ and we assume the maintained hypoth-
esis P ∈ PH ∪ PK .

Test statistic (Mahajan 4-2) Test statistic (a.k.a. test function) is a
decision rule δ : X → {0, 1}, where 1 corresponds to rejecting
H, and 0 to accepting it. Typically we evaluate a test over
this action space using the 0-1 loss function.

Equivalently defined by a critical region in the sample space
C ≡ {x ∈ X : δ(x) = 1}.

Type I/Type II error (Mahajan 4-2) Type I error: rejecting H
when in fact θ ∈ ΘH . Type II error: accepting H when
θ ∈ ΘK .

Power (Mahajan 4-2–3) βδ(θ) ≡ Pθ(δ(X) = 1), for θ ∈ ΘK . The
chance of (correctly) rejecting H given that the true param-
eter is θ ∈ ΘK . One minus the probability of Type II error
at a given θ.

Size (Mahajan 4-3; C&B 8.3.5) For θ ∈ ΘH , the power function
βδ(θ) ≡ Pθ(δ(X) = 1) gives the probability of a Type I error
(rejecting H incorrectly). Size is the largest probability of
this occurring: supθ∈ΘH

βδ(θ).

Level (Mahajan 4-3; C&B 8.3.6) A test is called level α for some
α ∈ [0, 1] if its size is at most α.

Distance function principle (Mahajan 4-7–8) When the hypoth-
esis is framed in terms of a parameter θ for which we have
a good estimate θ̂, it may be reasonable to reject if the dis-
tance between estimate and θ ∈ ΘH is large; i.e., reject if
T (x) ≡ infb∈ΘH d(θ̂, b) > k, where d(·, ·) is some distance
function.

p-value (Mahajan 4-8–9; C&B 8.3.26) The smallest level of significance
at which a researcher using a given test would reject H on the
basis of observed data x. The magnitude of the P-value can
be interpreted as a measure of the strength of the evidence
for H.

C&B offers a different conception: a test statistic with
p(x) ∈ [0, 1] for all x ∈ X , and Pθ(p(x) ≤ α) ≤ α for every
θ ∈ ΘH and every α ∈ [0, 1].

If we observe an iid sample from normal with known variance
and use T (x) =

√
nX̄/σ, the P-value is Φ(−

√
nX̄/σ).

Uniformly most powerful test (Mahajan 4-10, 19; C&B 8.3.11) Let
C be a set of tests. A test c∗ ∈ C with power function β∗(θ)
is a UMP class C test of H against K : θ ∈ ΘK iff for every
c ∈ C and every θ ∈ ΘK , we have β∗(θ) ≥ βc(θ). That is, for
every θ ∈ ΘK , the test c∗ is the most powerful class C test.

In many cases, UMP level α tests do not exist.

Simple likelihood ratio statistic (Mahajan 4-10) For simple null
and alternate hypotheses, L(x, θH , θK) ≡ p(x|θK)/p(x|θH)
(where p is either a pdf or pmf). By convention,
L(x, θH , θK) = 0 when both numerator and denominator
are zero.

Neyman-Pearson Lemma (Mahajan 4-12; C&B 8.3.12) Consider
testing H : θ = θ0 against K : θ = θ1 where pdf/pmf is p(·|θ).
Consider (randomized) likelihood ratio test function:

φk(x) =


1, L(x, θ0, θ1) > k;

0, L(x, θ0, θ1) < k;

γ ∈ (0, 1), L(x, θ0, θ1) = k.
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1. If φk is a size α (> 0) test (i.e., Eθ0 [φk(X)] = α), then
φk is the most powerful in the class of level α tests.

2. For each α ∈ [0, 1] there exists a MP size α likelihood
ratio test of the form φk.

3. If a test φ̃ is a MP level α test, then it must be a level α
likelihood ratio test. That is, there exists k and γ such
that for any θ ∈ {θ0, θ1}, we have Pθ(φ̃(X) 6= φ(X)) =
0.

Corollary: Power of a MP test ≥ its size. Consider the test
that rejects for all data with probability α; it has power α,
so MP test can’t do worse.

Monotone likelihood ratio models (Mahajan 4-16–8; C&B 8.3.16)

{Pθ : θ ∈ Θ}, where Θ ⊆ R is a MLR family if L(x, θ1, θ2)
is a monotone function of some function of the data T (x)
in the same direction for all pairs θ2 > θ1. If L(x, θ1, θ2)
is increasing (decreasing) in T (x), the family is increasing
(decreasing) MLR in T (x).

In the one parameter exponential family f(x|θ) =
h(x) exp[η(θ)T (x)−B(θ)],

L(x, θ1, θ2) = exp
[(
η(θ2)− η(θ1)

)
T (x)−

(
B(θ2)−B(θ1)

)]
;

and if η(θ) is strictly increasing in θ ∈ Θ, the family is MLR
increasing in T (x).

Suppose {Pθ : θ ∈ Θ} where Θ ⊆ R is MLR increasing in
T (x). Let δt(·) be the test that rejects if T (x) > t (and
possibly with some random probability if T (x) = t). Then,

1. The power function βδt (θ) is increasing in θ for all θ ∈ Θ
and all t;

2. If E0[δt(X)] = α > 0, then δt(·) is UMP level α for
testing H : θ ≤ θ0 against K : θ > θ0.

Unbiased test (Mahajan 4-20; C&B 8.3.9; Greene 157–8) A test φ for
H : θ ∈ ΘH against K : θ ∈ ΘK is unbiased of level α iff

1. βφ(θ) ≤ α for all θ ∈ ΘH (i.e., level α); and

2. βφ(θ) ≥ α for all θ ∈ ΘK (i.e., power ≥ α everywhere).

If φ is biased, then there is some θH ∈ ΘH and θK ∈ ΘK
such that βφ(θH) > βφ(θK); i.e., we are more likely to reject
under some true value than some false value.

Uniformly most powerful unbiased test (Mahajan 4-20–3) A
test φ∗ for H : θ ∈ ΘH against K : θ ∈ ΘK is UMPU of
level α iff it is unbiased at level α and it is more powerful
(for all θ ∈ ΘK) than any other unbiased test of level α.

The first condition is not strictly necessary, since the con-
stant randomized level α test is unbiased. If φ is UMP level
α, it will also be UMPU level α.

See Mahajan 4-23 for UMPU tests in one parameter expo-
nential families.

Likelihood ratio test (Mahajan 4-24–5, 34–6; Greene 159–67; C&B

10.3.1, 3; D&M 275) Test that rejects for large values of

L(X) ≡
supθ∈ΘK

p(x, θ)

supθ∈ΘH
p(x, θ)

.

Because distribution properties are often complex (and be-
cause ΘH is often of smaller dimension than Θ = ΘH ∪ΘK ,
which means sup over ΘK equals sup over Θ), we often use

λ(x) ≡
supθ∈Θ p(x, θ)

supθ∈ΘH
p(x, θ)

=
p(x, θ̂)

p(x, θ̂C)

where θ̂ is the MLE and θ̂C is the constrained MLE.

We will generally base our test on some monotonic function
of λ(x). Often 2 log λ(x) = 2[log p(x, θ̂)−log p(x, θ̂C)]. Writ-
ten more generally, we often have

2n[Qn(θ̂)−Qn(θ̂C)]
d−→ χ2

r,

where r is the number of restrictions (and where here,
Qn(b) ≡ 1

n

∑
log p(xi, b)).

Wald statistic (Hayashi 489–91; Greene 159–67; Mahajan 36–8; D&M 278)

Consider an estimator θ̂n ≡ argmaxb∈Θ Qn(W, b) satisfying:

1.
√
n(θ̂ − θ0) has Taylor expansion

√
n(θ̂ − θ0) = −Ψ−1√n

∂Qn(θ0)

∂θ
+ op;

2.
√
n
∂Qn(θ0)

∂θ

d−→ N(0,Σ) for some positive definite Σ;

3.
√
n(θ̂ − θ0) converges in distribution (to something);

4. Σ = −Ψ.

These conditions are satisfied for ML and efficient GMM un-
der certain conditions.

Under null H0 : ar×1(θ0) = 0, with A(θ) ≡ ∂a(θ)
∂θ′ and A(θ0)

of full row rank (no redundant restrictions),

W ≡ na(θ̂)′[A(θ̂)Σ̂−1A(θ̂)′]−1a(θ̂)
d−→ χ2

r.

Caution: Σ is the inverse of the asymptotic variance of the
estimator.

Note the restricted estimator doesn’t enter calculation of the
Wald statistic, so the size of resulting tests may be limited.
Also, the Wald statistic (unlike the LR or LM statistics) is
not invariant to the restriction formulation.

Lagrange multiplier statistic (Hayashi 489, 491–93; Greene 159–67;

Mahajan 38–9; D&M 275–8) Consider an estimator θ̂n ≡
argmaxb∈Θ Qn(W, b) ∈ Rp satisfying:

1.
√
n(θ̂ − θ0) has Taylor expansion

√
n(θ̂ − θ0) = −Ψ−1√n

∂Qn(θ0)

∂θ
+ op;

2.
√
n
∂Qn(θ0)

∂θ

d−→ N(0,Σ) for some positive definite Σ;

3.
√
n(θ̂ − θ0) converges in distribution (to something);

4. Σ = −Ψ.

These conditions are satisfied for ML and efficient GMM un-
der certain conditions.

Under null H0 : ar×1(θ0) = 0, with A(θ) ≡ ∂a(θ)
∂θ′ and

A(θ0) of full row rank (no redundant restrictions), define

the constrained estimator as θ̂c ≡ argmaxb∈Θ Qn(W, b) s.t.
a(b) = 0. Then

LM ≡ n
(∂Qn(θ̂c)

∂θ︸ ︷︷ ︸
1×p

)′
Σ̃−1︸︷︷︸
p×p

(∂Qn(θ̂c)

∂θ︸ ︷︷ ︸
1×p

)
d−→ χ2

r

where Σ̃ is a consistent estimator under the null (i.e., con-

structed using θ̂c).

Asymptotic significance (Mahajan 39) A test δn(·) has asymp-
totic significance level α iff limn→∞ PP (δn(X) = 1) ≤ α for
all P ∈ P0.

Asymptotic size (Mahajan 39) Asymptotic size (a.k.a. limiting
size) of a test δn(·) is limn→∞ supP∈P0

PP (δn(X) = 1).

Consistent test (Mahajan 39) A test δn(·) is consistent iff
limn→∞ PP (δn(X) = 1) = 1 for all P ∈ P1.

1.13 Time-series concepts

iid white noise =⇒ stationary mds with finite variance =⇒
white noise.

Stationarity (Hayashi 98–9; Hansen B1-11; D&M 132) {zi} is (strictly)
stationary iff for any finite set of subscripts i1, . . . , ir, the
joint distribution of (zi, zi1 , zi2 , zir ) depends only on i1 −
i, . . . , ir − i but not on i.

Any (measurable) transformation of a stationary process is
stationary.

Covariance stationarity (Hayashi 99–100, 401; Hansen B1-11) {zi} is
covariance- (or weakly) stationary iff:

1. µ ≡ E[zi] does not depend on i, and

2. Γj ≡ Cov[zi, zi−j ] (the j-th order autocovariance) ex-
ists, is finite, and depends only on j but not on i.

A strictly stationary process is covariance-stationary as long
as the variance and covariances are finite.

LLN for covariance-stationary processes with vanishing au-
tocovariances:
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1. If limj→∞ γj = 0, then ȳ
L2−−→ µ;

2. If
∑
j∈Z γj <∞, then limn→∞ Var(

√
nȳ) =

∑
j∈Z γj <

∞ (called the “long-run variance”).

White noise (Hayashi 101; Hansen B1-28) {εi} is white noise iff:

1. It is covariance-stationary,

2. E[εi] = 0 for all i (zero mean), and

3. Γj ≡ Cov[εi, εi−j ] = 0 for j 6= 0 (no serial correlation).

An iid sequence with mean zero and finite variance is an
“independent” (i.e., iid) white noise process.

Ergodicity (Hayashi 101–2, 402–5; Hansen B1-12, 26; D&M 132–3) {zi} is
ergodic iff it is stationary and for any two bounded functions
f : Rk → R and g : Rl → R,

lim
n→∞

∣∣E[f(zi, . . . , zi+k) · g(zi+n, . . . , zi+n+l)]
∣∣

=
∣∣E[f(zi, . . . , zi+k)]

∣∣ · ∣∣E[g(zi+n, . . . , zi+n+l)]
∣∣.

(Note the RHS needs no limit in n, since by stationarity it
doesn’t affect g(·).) Intuitively, represents “asymptotic in-
dependence”: two elements sufficiently far apart are nearly
independent.

A sequence of the form {Z(zi, . . . , zi+k)} is also ergodic.

Ergodic Theorem is LLN for ergodic processes: if {zi} er-

godic stationary with E[zi] = µ, then z̄n ≡ 1
n

∑
i zi

as−→ µ.

Gordin’s CLT for zero-mean∗ ergodic stationary processes:
Suppose {zi} is ergodic stationary and

1. E[ztz′t] exists and is finite;

2. E[zt|zt−j , zt−j−1, . . . ]
L2−−→ 0 as j → ∞ (i.e., knowing

about the distant past does you no good in estimating
today);

3.
∑∞
j=0

√
E[r′tjrtj ] < ∞, where rtj ≡

E[zt|zt−j , zt−j−1, . . . ] − E[zt|zt−j−1, zt−j−2, . . . ] are
the “revisions” to conditional expectations as the in-
formation set increases.

Then

1. E[zt] = 0;

2. Autocovariances are absolutely summable (i.e.,∑
j∈Z|Γj | <∞);

3. z̄ is asymptotically normal with long-run variance as in
covariance-stationary processes with vanishing covari-
ances:

√
nz̄

d−→ N

(
0,
∑
j∈Z

Γj

)
.

Martingale (Hayashi 102–3; Hansen B1-14; D&M 133) {xi} is a
martingale with respect to {zi} (where xi ∈ zi) iff
E[xi|zi−1, zi−2, . . . , z1] = xi−1 for i ≥ 2.

Random walk (Hayashi 103; Hansen B1-14) An example of a martin-
gale. Let {gi} be an iid white noise process. The sequence
of cumulative sums {zi} where zi = g1 + · · ·+gi is a random
walk.

Martingale difference sequence (Hayashi 104; D&M 134; Hansen

B1-14) {gi} is an mds iff E[gi|gi−1, gi−2, . . . , g1] = 0 for i ≥ 2.

The cumulative sum of an mds is a martingale; conversely,
the first differences of a martingale are an mds. A mds has
no serial correlation (i.e., Cov(gi, gj) = 0 for all i 6= j).

Ergodic stationary martingale differences CLT (Hayashi

106–7; Hansen B1-15–6) Given a stationary ergodic mds† {gi}
with E[gig

′
i] = Σ,

√
nḡ ≡

1
√
n

n∑
i=1

gi
d−→ N(0,Σ).

Lag operator (Hayashi 369–74; Hansen B1-31–3) Ljxt ≡ xt−j . Filter
α(L) ≡ α0 + α1L+ α2L2 + · · · . Filter applied to a constant
is α(L)c = α(1)c = c

∑∞
j=0 αj .

1. If coefficients are absolutely summable (
∑
|αj | < ∞),

and {xt} is covariance-stationary, then yt ≡ α(L)xt
converges in L2 and is covariance-stationary; if autoco-
variances of {xt} are absolutely summable, then so are
autocovariances of {yt}.

2. As long as α0 6= 0, the inverse α(L)−1 is well defined.

3. If α(z) = 0 =⇒ |z| > 1 (the “stability condi-
tion”), then the coefficients of α(L)−1 are absolutely
summable.

Moving average process (Hayashi 366–8, 402; Hansen B1-28–9, 36–7)

yt = µ +
∑∞
j=0 ψjεt−j , with {εt} white noise and Var εt =

σ2
ε . Equivalently, (yt−µ) = ψ(L)εt. Given absolute summa-

bility
∑
j∈Z|ψj | < ∞, a sufficient condition for convergence

(in L2),

1. E[yt] = µ;

2. Autocovariances γj = σ2
ε

∑∞
k=0 ψj+kψk (if we have a

MA(q) process, γj = (ψjψ0 +ψj+1ψ1 +· · ·+ψqψq−j)σ2
ε

for |j| ≤ q);

3. Autocovariances γj are absolutely summable (i.e.,∑
j∈Z |γj | <∞);

4. Long-run variance
∑
j∈Z γj = σ2

ε [ψ(1)]2.

5. If {εt} is iid white noise, {yt} is ergodic stationary.

CLT for MA(∞): If {εt} is iid white noise, and absolute
summability

∑
j∈Z|ψj | <∞ holds, then

√
n[ȳ − µ]

d−→ N

(
0,
∑
j∈Z

γj

)
= N

(
0, σ2

ε [ψ(1)]2
)
.

Autoregressive process of degree one (Hayashi 376–8, 385) yt =
c+φyt−1 +εt, with {εt} white noise and Var εt = σ2

ε . Equiv-
alently, (1− φL)yt = c+ εt, or (1− φL)(yt − µ) = εt where
µ ≡ c/(1− φ).

1. If |φ| < 1, then the unique covariance-stationary so-
lution is the MA(∞) yt = µ +

∑∞
j=0 φ

jεt−j ; it has
absolutely summable coefficients.

• E yt = µ,

• γj = φjσ2
ε/(1− φ2),

• Autocovariances γj are absolutely summable,

• ρj ≡ γj/γ0 = φj ,

• Long-run variance
∑
j∈Z γj = σ2

ε/(1− φ)2.

2. If |φ| > 1, then the unique covariance-stationary solu-
tion is a MA(∞) of future values of ε.

3. If |φ| = 1 (“unit root”), there is no covariance-
stationary solution.

Autoregressive process of degree p (Hayashi 378–80, 385)

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt,

with {εt} white noise and Var εt = σ2
ε . Equivalently,

φ(L)yt = c + εt where φ(L) ≡ 1 − φ1L − · · · − φpLp (note
the minus signs). Equivalently, φ(L)(yt − µ) = εt where
µ ≡ c/φ(1) = c/(1−

∑
φj).

Assuming stability (i.e., φ(z) = 0 =⇒ |z| > 1),

1. The unique covariance-stationary solution is the
MA(∞) yt = µ+φ(L)−1εt; it has absolutely summable
coefficients;

2. E yt = µ;

3. Autocovariances γj are absolutely summable;

4. Long-run variance
∑
j∈Z γj = σ2

ε/[φ(1)]2.

ARMA process of degree (p, q) (Hayashi 380–3, 385; Hansen B1-30,

43–7) Autoregressive/moving average process with p autore-
gressive lags and q moving average lags:

yt = c+ φ1yt−1 + · · ·+ φpyt−p + θ0εt + · · ·+ θqεt−q ,

with {εt} white noise and Var εt = σ2
ε . Equivalently,

φ(L)yt = c+ θ(L)εt
∗Hansen B1-26 gives a slightly different statement for nonzero-mean ergodic stationary processes.
†This is actually a corollary of Billingsley’s stronger CLT (which does not require ergodic stationarity) stated in Hansen B1-16.
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where φ(L) ≡ 1 − φ1L − · · · − φpLp (note the minus signs)
and θ(L) ≡ θ0 + θ1L+ · · ·+ θqLq . Equivalently,

φ(L)(yt − µ) = θ(L)εt

where µ ≡ c/φ(1) = c/(1 −
∑
φj). Note if φ(z) and

θ(z) have a common root, we can factor it out and get an
ARMA(p− 1, q − 1).

Assuming stability (i.e., φ(z) = 0 =⇒ |z| > 1),

1. The unique covariance-stationary solution is the
MA(∞) yt = µ + φ(L)−1θ(L)εt; it has absolutely
summable coefficients;

2. E yt = µ;

3. Autocovariances γj are absolutely summable.

If θ(z) = 0 =⇒ |z| > 1 (here called the “invertability
condition”), we can write as a AR(∞): θ(L)−1φ(L)yt =
(c/θ(1)) + εt.

For ARMA(1, 1) yt = c+ φyt−1 + εt − θεt−1, long-run vari-
ance is ∑

j∈Z
γj = σ2

ε

(
1− θ
1− φ

)2

.

For ARMA(p, q) yt = c + [
∑
i φiyt−i] + εt − [

∑
j θjεt−j ],

long-run variance is

∑
j∈Z

γj = σ2
ε

[θ(1)]2

[φ(1)]2
= σ2

ε

(
1−

∑
j θj

1−
∑
i φi

)2

.

Autoregressive conditional heteroscedastic process
(Hayashi 104–5; Hansen B1-38) ARCH(q) is a martingale
difference sequence {gi} with conditional variance
Var[gi|gi−1, . . . , g1] = ζ + α1g2

i−1 + · · · + αqg2
i−q . For

example, ARCH(1) is:

gi = εi

√
ζ + αg2

i−1

and {εi} iid with E εi = 0 and Var εi = 1.

1. E[gi|gi−1, . . . , g1] = 0;

2. Var[gi|gi−1, . . . , g1] = E[g2
i |gi−1, . . . , g1] = ζ + αg2

i−1,
which depends on the history of the process (own con-
ditional heteroscedasticity);

3. Strictly stationary and ergodic if |α| < 1 and g1 drawn
from an appropriate distribution (or process started in
infinite past);

4. If the process is stationary, E[g2
i ] = ζ/(1− α).

GARCH process (Hansen B1-38–9) GARCH(p, q) is a sequence
{ri} with conditional variance given by

Var[ri|ri−1, . . . , r1] ≡ σ2
i =

ω + α1r
2
i−1 + · · ·+ αqr

2
i−q + β1σ

2
i−1 + · · ·+ σ2

i−p.

For {ri} a GARCH(1, 1) process, define vi ≡ r2
i − σ2

i . Then
we can write {r2

i } as an ARMA(1, 1) and {σ2
i } as an AR(1),

with shocks {vi}:

r2
i = ω + (α1 + β1)r2

i−1 + vt − β1vt−1,

σ2
i = ω + (α1 + β1)σ2

i−1 + α1vt−1.

Local level model (Hansen B1-41–2) Xt is “true” latent variable,
Yt is observed value:

Yt = Xt + ηt,

Xt = Xt−1 + εt

with {ηt} (measurement error) and {εt} independent iid
shocks. Yt is an ARMA(1, 1) with Yt = Yt−1+εt+ηt−ηt−1.∗

Estimating number of lags (Greene 834–5) Calculate sample au-
tocorrelations and partial autocorrelations using OLS:

• acf : For ρk, regress yt on yt−k (and potentially a con-
stant);

• pacf : For ρ∗k, regress yt on yt−1, . . . , yt−k (and poten-
tially a constant), and use the coefficient on yt−k.

Typically, an AR(p) will have acf declining monotonically,
and pacf irregular out to lag p, after which they will abruptly
drop to zero and remain there.

Typically, an MA(q) will have pacf declining monotonically,
and acf irregular out to lag q, after which they will abruptly
drop to zero and remain there.

An ARMA(p, q) is a mixture of the above.

Estimating AR(p) (Hayashi 392–4, 547–9) Suppose {yt} with yt =
c + [

∑p
j=1 φjyt−j ] + εt, and {εt} iid white noise (note we

need iid for ergodicity and stationarity). Then we can use
OLS to regress yt on (1, yt−1, . . . , yt−p)′, since the model
satisfies linearity, stationary ergodicity, independence of re-
gressors from errors, conditional homoscedasticity, mds and
finite second moments of g, and the rank condition. We have
consistent, asymptotically normal estimation of φ, as well as
consistent variance estimation.

Under Gaussian AR(1), conditional ML for φ is numerically
equal to OLS estimate, and conditional ML σ̂2

CML = SSR
n

.

Maximum likelihood with serial correlation (Hayashi 543–47)

Note that treating a serially correlated process as if it were
iid may give consistent (“quasi-”) ML estimators, since it is
an M-estimator no matter the data’s distribution.

1. Exact ML: use the fact that

f(yn, . . . , y0) =
f(yn, . . . , y0)

f(yn−1, . . . , y0)
·
f(yn−1, . . . , y0)

f(yn−2, . . . , y0)
·

· · · · f(y0)

=
[ n∏
t=1

f(yt|yt−1, . . . , y0)
]
f(y0).

Log-likelihood is generally nonlinear due to the last
term.

2. Conditional ML: use the (linear)

log f(yn, . . . , y0|y0) =
n∑
t=1

log f(yt|yt−1, . . . , y0).

1.14 Ordinary least squares

Ordinary least squares model (Hayashi 4–12, 34, 109–10, 123, 126;

Mahajan 6-4–6, 12–3) Let

Xi︸︷︷︸
K×1

=

 xi1...
xiK

 , β︸︷︷︸
K×1

=

 β1

...
βK

 ,

Y︸︷︷︸
n×1

=

y1

...
yn

 , ε︸︷︷︸
n×1

=

ε1...
εn

 , X︸︷︷︸
n×K

=

X
′
1

...
X′n

 .
The model may assume:

1. Linearity (p. 4): Y = Xβ + ε;

2. Strict exogeneity (p. 7–9): E[ε|X] = 0 (n.b., conditional
on regressors for all observations); implies:

• E[ε] = 0,

• E[xjkεi] = 0 for all i = 1, . . . , n, j = 1, . . . , n,
k = 1, . . . ,K,

• Cov(εi, xjk) = 0 for all i = 1, . . . , n, j = 1, . . . , n,
k = 1, . . . ,K;

3. No multicolinearity (p. 10): rank(X) = K with proba-
bility 1 (full column rank);

4. Spherical error variance (p. 10–2): E[εε′|X] = σ2In, or
equivalently,

• Conditional homoscedasticity: E[ε2i |X] = σ2 for all
i = 1, . . . , n,

• No correlation between observations: E[εiεj |X] =
0 for i 6= j;

5. Normal errors (p. 34): ε|X ∼ N(0, σ2In), which given
above assumptions implies ε ⊥⊥ X and ε ∼ N(0, σ2In);

6. Ergodic stationarity (p. 109): {yi, Xi} is jointly station-
ary and ergodic (implies unconditional homoscedastic-
ity, but allows conditional heteroscedasticity);

∗It is not clear to me what the white noise sequence and MA coefficients are that generate this sequence, but since εt + ηt − ηt−1 is covariance stationary with two nonzero autocovariances, we should be able to fit one.
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7. Predetermined regressors (p. 109–10) All regressors
are orthogonal to the contemporaneous error term:
E[xikεi] = 0 for all i = 1, . . . , n, k = 1, . . . ,K; also
written E[gi] = 0 where gi ≡ Xiεi;

8. Rank condition (p. 110): The K × K matrix Σxx ≡
E[XiX

′
i] is nonsingular (and hence finite);

9. gi is a mds with finite second moments (p. 110): {gi} ≡
{Xiεi} is a mds (which implies assumption 7); the
K ×K matrix S ≡ E[gig

′
i] is nonsingular;

10. Finite fourth moments for regressors (p. 123):
E[(xikxij)

2] exists and is finite for all k, j = 1, . . . ,K;

11. Conditional homoscedasticity (p. 126): E[ε2i |xi] = σ2 >
0 (implies S = σ2Σxx).

Ordinary least squares estimators (Hayashi 16–8, 19, 27–8, 31,

51–2; Mahajan 6-6–11) OLS estimator for β is b ≡
argminβ̃ SSR(β̃) ≡ argminβ̃(Y −Xβ̃)′(Y −Xβ̃). FOCs give

“normal equations” (a.k.a. “moment equations”) X′Xb =
X′Y ⇐⇒ X′e = 0 where e is OLS residual e ≡ Y −Xb.

By no multicolinearity, X′X is nonsingular (hence positive
definite and satisfying SOC), so

b = (X′X)−1X′Y = S−1
XXsXY

minimizes normalized distance function

1

2nσ̂2
(Y − Zδ̃)′(Y − Zδ̃) =

1

2nσ̂2
SSR.

1. Unbiased: E[b|X] = β (under assumptions 1–3).

2. Gauss-Markov: b is most efficient among linear unbi-
ased estimators,∗ i.e., best linear (in Y ) unbiased esti-
mator (assumptions 1–4).

3. Cov(b, e|X) = 0, where e ≡ Y −Xb (assumptions 1–4).

4. Var[b|X] = σ2(X′X)−1 (assumptions 1–4); therefore a

common estimator is ̂Var(b|X) ≡ s2(X′X)−1. Under
normal error assumption, CRLB

I−1 =

[
σ2(X′X)−1 0

0 2σ4/n

]
so b achieves CRLB and is UMVUE—this result is
stronger than Gauss-Markov, but requires normal er-
rors.

OLS estimator for σ2 is

s2 ≡
SSR

n−K
=

e′e

n−K
.

Unbiased (assumptions 1–4). Under normal error assump-
tion, Var(s2|X) = 2σ4/(n−K) which does not meet CRLB
but is UMVUE.

Asymptotic properties of OLS estimator (Hayashi 113, 115)

OLS estimator b satisfies

1. Consistent: b
p−→ β (under assumptions 1, 6–8).

2. Asymptotically normal:
√
n(b − β)

d−→ N(0,Avar(b))
where Avar(b) = Σ−1

xx SΣ−1
xx (assumptions 1, 6, 8–9).

3. Consistent variance estimation: Assuming existence of
a consistent estimator Ŝ for S ≡ E[gig

′
i], estimator

Âvar(b) ≡ S−1
xx ŜS

−1
xx is consistent for Avar(b) (assump-

tion 6).

OLS error variance estimator s2 (a.k.a. variance of residu-
als) is consistent for E[ε2i ], assuming expectation exists and
is finite (assumptions 1, 6–8).

Estimating S (Hayashi 123–4, 127–8) If β̂ (usually b) is consistent,

then ε̂i ≡ yi − x′iβ̂ is consistent. Then under assumptions 1,
6, and 10, a consistent estimator for S is

Ŝ ≡
1

n

n∑
i=1

ε̂2i xix
′
i.

Under assumptions 1, 6–8, and 11 (note with conditional ho-
moscedasticity, we no longer require finite fourth moments),

can use Ŝ ≡ s2Sxx where s is the (consistent) OLS estimate
of σ2.

Biases affecting OLS (Hayashi 188–9, 194–7) OLS estimation in-
consistent due to, e.g.:

1. Simultaneity (p. 188–9);

2. Errors-in-variables (e.g., classical measurement error)
(p. 194–5);

3. Unobserved variables (p. 196–7).

Maximum likelihood estimator for OLS model (Hayashi 49;

Mahajan 6-18–9) Assuming normal errors, the OLS estimate
for β is also the ML estimate.

β̂ML = b;

σ̂2
ML = 1

n
e′e = 1

n
SSR = n−K

n
s2.

Best linear predictor (Mahajan 6-2–3; Hayashi 139–40) Population
analogue of OLS. Suppose (y, x) a r.v. with y ∈ R and
x ∈ Rk. Best linear predictor of y given X is

Ê∗(y|x) ≡ L(y|x) = x′ E[xx′]−1 E[xy].

If one regressor in x ≡ [1 x̃′]′ is constant, then Ê∗(y|x) ≡
Ê∗(y|1, x̃) = µ + γ′x̃ where γ = Var[x̃]−1 Cov[x̃, y] and
µ = E[y]− γ′ E[x̃].

Fitted value (Hayashi 18) Ŷ ≡ Xb = PY . Thus OLS residuals
e = Y − Ŷ .

Projection matrix (Hayashi 18–9; Mahajan 6-9–10; D&M 292–3) P ≡
X(X′X)−1X′. Projects onto space spanned by columns of

X (PX = X). Fitted values Ŷ ≡ Xb = PY . Idempotent
and symmetric.

An oblique projection matrix PΩ ≡ X(X′Ω−1X)−1X′Ω−1

(and its associated annihilator) are idempotent, but not sym-
metric.

Annihilator matrix (Hayashi 18–9, 30–1; Mahajan 6-9–10) M ≡ I−P .
Residuals e = Y − Ŷ = MY = Mε, and thus are orthogonal
to X (since MX = 0).

Sum of squared residuals SSR ≡ e′e = Y ′MY = Y ′e =
e′Y = ε′Mε.

M is idempotent and symmetric. rank(M) = tr(M) = n−K.

Standard error of the regression (Hayashi 19) SER ≡
√
s2.

[a.k.a. standard error of the equation.]

Sampling error (Hayashi 19, 35) b−β = (X′X)−1X′ε. Under nor-
mal error assumption, b− β|X ∼ N(0, σ2(X′X)−1).

OLS R2
(Hayashi 20–1, 67; Mahajan 6-11–2; Greene 250–3) In population,

the fraction of variation in Y attributable to variation in X
is

1−
Var ε

Var y
=

Var(x′β)

Var y
= (ρy,x′β)2.

(“Uncentered”) sample analogue is: Ŷ ′Ŷ /Y ′Y = 1 −
e′e/Y ′Y .

Centered: should be used if regressors include a constant;∑
(ŷi − ȳ)2∑
(yi − ȳ)2

= 1−
e′e∑

(yi − ȳ)2
.

Be careful when comparing equations on the basis of the
fit (i.e., R2): the equations must share the same dependent
variable to get a meaningful comparison.

Standard error (Hayashi 35–7)

SE(bk) ≡
√
s2[(X′X)−1]kk =

√
[ ̂Var(b|X)]kk.

Robust standard error (Hayashi 117, 211-2)

SE∗(bk) ≡
√

1
n

̂Avar(bk) ≡
√

1
n

[S−1
xx ŜS

−1
xx ]kk.

OLS t test (Hayashi 35–7; Mahajan 6-13–16) Assuming normal er-
rors. Test for H : βk = β̄k. Since bk − β̄k|X ∼
N(0, σ2[(X′X)−1]kk) under null, we have

zk ≡
bk − β̄k√

σ2[(X′X)−1]kk
∼ N(0, 1).

∗Variance of b is less than or equal to variance of any other linear unbiased estimator of β in the matrix sense; i.e., difference is positive semidefinite.
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If σ2 is unknown, use s2 to get t-ratio:

tk ≡
bk − β̄k√

s2[(X′X)−1]kk
≡
bk − β̄k
SE(bk)

∼ tn−K

under null. Accept for tk close to zero—t distribution sym-
metric about zero.

Level-α confidence interval for β̄k is bk±SE(bk)·tα/2(n−K).

OLS robust t test (Hayashi 117–9) Test for H : βk = β̄k. Under
null, we have

tk ≡
√
n(bk − β̄k)√

̂Avar(bk)

≡
bk − β̄k
SE∗(bk)

d−→ N(0, 1).

OLS F test (Hayashi 39–44, 53; Mahajan 6-16–7, 20–5) Assuming nor-
mal errors. Test for H : R#r×KβK×1 = r#r×1, where
rank(R) = #r (i.e., R has full row rank—there are no re-
dundant restrictions). Accept if F ∼ F#r,n−K (under null)
is small, where:

F ≡
(Rb− r)′[R(X′X)−1R′]−1(Rb− r)/#r

s2

= (Rb− r)′[R ̂Var(b|X)R′]−1(Rb− r)/#r

=
(SSRR− SSRU )/#r

SSRU /(n− k)
=
n−K

#r
(λ2/n − 1)

(and λ ≡ LU/LR = (SSRU / SSRR)−n/2 the likelihood ra-
tio). The first and second expressions are based on Wald
principle; the third on LR.

F ratio is square of relevant t ratio. F is preferred to multiple
t tests—gives an eliptical rather than rectangular confidence
region.

OLS robust Wald statistic (Hayashi 118, 122) Test for
H : R#r×KβK×1 = r#r×1, where rank(R) = #r (i.e.,
R has full row rank—there are no redundant restrictions).
Under null,

W ≡ n(Rb− r)′[RÂvar(b)R′]−1(Rb− r) d−→ χ2
#r.

For H : a#a(β) = 0, where A#a×K(β) ≡ ∇a(β) is continu-
ous and of full row rank, under null,

W ≡ na(b)′
[
A(b)Âvar(b)A(b)′

]−1
a(b)

d−→ χ2
#a.

Generalized least squares (Hayashi 54–9, 415–7; Mahajan 6-25–9;

D&M 289–92, 295) Without assumption 4 (spherical error vari-
ance), we have E[εε′|X] ≡ σ2V with Vn×n 6= I assumed to
be nonsingular. Gauss-Markov no longer holds; the t and F
tests are no longer valid; however, the OLS estimator is still
unbiased.

By the orthogonal decomposition of V −1, we can write
V −1 ≡ C′C for some (non-unique C). Writing ỹ ≡ Cy, X̃ ≡

CX, ε̃ ≡ Cε, we get transformed model ỹ = X̃β + ε̃ which
satisfies assumptions of classical linear regression model.
Thus we have the unbiased, efficient estimator:

β̂GLS ≡ argmin
β̃

(y −Xβ̃)′V −1(y −Xβ̃)

≡ (X′V −1X)−1X′V −1y

Var(β̂GLS|X) ≡ σ2(X′V −1X)−1.

This can also be seen as an IV estimator with instruments
V −1X.

Note consistency and other attractive properties rely on
strict exogeneity of regressors; if they are merely predeter-
mined, the estimator need not be consistent (unlike OLS,
which is).

Feasible generalized least squares (Hayashi 59, 133-7, 415–7; Ma-

hajan 6-25–9; D&M 298–301, 295) In practice, the covariance ma-
trix σ2V is generally not known (even up to a constant).

Feasible GLS uses an estimate V̂ , and “under reasonable
conditions, yields estimates that are not only consistent but
also asymptotically equivalent to genuine GLS estimates, and
therefore share their efficiency properties. However, even
when this is the case, the performance in finite samples of
FGLS may be much inferior to that of genuine GLS.”

Caution that FGLS is that consistency is not guaranteed if
the regressors are merely predetermined (rather than strictly
exogenous).

Weighted least squares (Hayashi 58–9; Mahajan 6-27–8) GLS where
there is no correlation in the error term between observations
(i.e., the matrix V is diagonal). GLS divides each element
of X and Y by the standard deviation of the relevant error
term, and then runs OLS. That is, observations with a higher
conditional variance get a lower weight.

Can also think of as

β̂ = argmin
β̃

∑
i

1
σ2
i

(yi − x′iβ̃)2.

Thus the “weights” typically passed to OLS software are the
reciprocal of the variances (not the reciprocal of the standard
deviations).

Frisch-Waugh Theorem (D&M 19–24; Hayashi 72–4; Greene 245–7)

Suppose we partition X into X1 and X2 (and therefore β
into β1 and β2). Then OLS estimators

b1 = (X′1X1)−1X′1(Y −X2b2);

b2 = (X′2M1X2)−1(X′2M1Y )

= (X̃′2X̃2)−1X̃′2Ỹ

where X̃2 ≡ M1X2 and Ỹ ≡ M1Y are the residuals from
regressing X2 and Y respectively on X1.

In addition, the residuals from regressing Y on X equal the
residuals from regressing Ỹ on X̃2.

Short and long regressions (Mahajan 6-33–7) Suppose we have
best linear predictors

Ê∗(y|x1, x2) = x′1β1 + x′2β2,

Ê∗(y|x1) = x′1δ.

Then β1 = δ iff either E[x1x2] = 0 or β2 = 0 since

δ = β1 +
(
E(x1x

′
1)
)−1(

E(x1x
′
2)β2

)
.

Note this result is the population analogue of the Frisch-
Waugh result for b1.

1.15 Linear Generalized Method of Mo-
ments

This material is also covered (with slightly different
notation—notably the exchange of x with z—in Mahajan
7.

Linear GMM model (Hayashi 198–203, 212, 225–6, 406–7) The model
may assume:

1. Linearity (p. 198): yi = z′iδ + εi with zi, δ ∈ RL;

2. Ergodic stationarity (p. 198): xi ∈ RK instru-
ments; unique, non-constant elements of {(yi, zi, xi)}
are jointly ergodic stationary (stronger than individu-
ally ergodic stationary);

3. Orthogonality (p. 198): All K elements of xi predeter-
mined (i.e., orthogonal to current error term): E[gi] ≡
E[xiεi] = E[xi(yi − z′iδ)] = 0;

4. Rank condition for identification (p. 200): Σxz ≡
E[xiz

′
i]K×L has full column rank (i.e., rank L);

• K > L: Overidentified/determined (use GMM es-
timator),

• K = L: Just/exactly identified/determined (GMM
estimator reduces to IV estimator),

• K < L: Not/under identified/determined;

5. Requirements for asymptotic normality (p. 202–3):

• {gi} ≡ {xiεi} is a martingale difference sequence
with K ×K matrix of cross moments E(gig

′
i) non-

singular;

• S ≡ limn→∞ Var[
√
nḡ] = Avar(ḡ) =

Avar( 1
n

∑
gi) = Avar( 1

n

∑
ε2i xix

′
i);

• By assumption 2 and ergodic stationary mds CLT,
S = E[gig

′
i] = E[ε2i xix

′
i];

6. Finite fourth moments (p. 212): E[(xikzil)
2] exists and

is finite for all k and l;

7. Conditional homoscedasticity (p. 225–6): E(ε2i |xi) =
σ2, which implies S ≡ E[gig

′
i] = E[ε2i xix

′
i] =

σ2 E[xix
′
i] = σ2Σxx. Note:

• By assumption 5, σ2 > 0 and Σxx nonsingular;
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• Ŝ = σ̂2 1
n

∑
i xix

′
i = σ̂2Sxx where σ̂2 consistent, so

no longer need assumption 6 for consistent estima-
tion of S;

8. {gt} ≡ {xtεt} satisfies Gordin’s condition (p. 406–7): it
is ergodic stationary and

(a) E[gtg′t] exists and is finite;

(b) E[gt|gt−j , gt−j−1, . . . ]
L2−−→ 0 as j →∞;

(c)
∑∞
j=0

√
E[r′tjrtj ] < ∞, where rtj ≡

E[gt|gt−j , gt−j−1, . . . ]− E[gt|gt−j−1, gt−j−2, . . . ];

and the long-run covariance matrix S = Avar(ḡ) ≡∑
j∈Z Γj is nonsingular.

Instrumental variables estimator (Hayashi 205–6) A method of
moments estimator based on K orthogonality (moment) con-
ditions. For just identified GMM model (K = L; identifica-
tion also requires nonsingularity of Σxz ≡ E[xiz

′
i]),

δ̂IV ≡ S−1
xz sxy ≡

(
1
n

∑
i

xiz
′
i

)−1(
1
n

∑
i

xiyi

)
.

Numerically equivalent to linear GMM estimator with any
symmetric positive definite weighting matrix. If instruments
are same as regressors (xi = zi), reduces to OLS estimator.
For properties, see GMM estimators.

If one non-constant regressor and one non-constant instru-
ment, plim δ̂IV = Cov(x, y)/Cov(x, z).

Linear GMM estimator (Hayashi 206–12, 406–7; D&M 219–20) For
overidentified case (K > L), cannot generally satisfy all K
moment conditions, so estimator is

δ̂(Ŵ ) ≡ argmin
δ̃

1
2
gn(δ̃)′Ŵgn(δ̃)

≡ argmin
δ̃

1
2n2 (Y − Zδ̃)′XŴX′(Y − Zδ̃)

with gn(δ̃) ≡ 1
n

∑
i xi(yi−z′iδ̃) and some symmetric positive

definite matrix Ŵ
p−→W (where Ŵ can depend on data, and

W also symmetric and positive definite).

δ̂GMM ≡ (S′xzŴSxz)−1S′xzŴsxy

≡ (Z′XŴX′Z)−1Z′XŴX′Y.

If K = L (just identified case), reduces to IV estimator for

any choice of Ŵ .

1. Consistency: δ̂(Ŵ )
p−→ δ (under assumptions 1–4).

2. Asymptotic normality:
√
n(δ̂(Ŵ ) − δ)

d−→
N(0,Avar(δ̂(Ŵ ))) where

Avar(δ̂(Ŵ )) =

(Σ′xzWΣxz)−1︸ ︷︷ ︸
−Ψ−1

Σ′xzWSWΣxz︸ ︷︷ ︸
Σ

(Σ′xzWΣxz)−1︸ ︷︷ ︸
−Ψ−1

(assumptions 1–4, 5 or 8). Note sampling error δ̂(Ŵ )−
δ = (S′xzŴSxz)−1S′xzŴgn(δ).

3. Consistent variance estimation: If Ŝ is a consistent es-
timator of S, then (assumption 2)

̂
Avar(δ̂(Ŵ )) =

(S′xzŴSxz)−1S′xzŴ ŜŴSxz(S′xzŴSxz)−1.

4. Consistent estimation of S: If δ̂ is consistent, S ≡
E[gig

′
i] exists and is finite, and assumptions 1, 2, (5

implied?] and 6, then

Ŝ ≡ 1
n

∑
i

ε̂2i xix
′
i = 1

n

∑
i

(yi − z′iδ̂)2xix
′
i

p−→ S.

For estimation of S under assumption 8 in place of 5,
see Hayashi 407–12 on kernel estimation and VARHAC.

5. Choosing instruments: Adding (correct) instruments
generally increases efficiency, but also increases finite-
sample bias; “weak” instruments (that are almost un-
correlated with regressors) make asymptotics poorly ap-
proximate finite-sample properties.

GMM estimator can be seen as a GLS estimator: GMM min-
imizes e′XŴX′e = e′ŴGLSe where ŴGLS ≡ XŴX′.

GMM hypothesis testing (Hayashi 211–2, 222–4; Mahajan 7-7–12;

D&M 617–8) Assume 1–5. Under null, Wald principle gives:

1. H0 : δl = δ̄l,

tl ≡
δ̂l(Ŵ )− δ̄l

SE∗l

d−→ N(0, 1).

2. H0 : R#r×LδL×1 = r#r×1, where rank(R) = #r (i.e.,
R has full row rank—there are no redundant restric-
tions),

W ≡ n(Rδ̂(Ŵ )− r)′
[
R[

̂
Avar(δ̂(Ŵ ))]R′

]−1

(Rδ̂(Ŵ )− r) d−→ χ2
#r.

3. H0 : a#a(δ) = 0, where A#a×L(δ) ≡ ∇a(δ) is continu-
ous and of full row rank,

W ≡ na(δ̂(Ŵ ))′
[
A(δ̂(Ŵ ))[

̂
Avar(δ̂(Ŵ ))]A(δ̂(Ŵ ))′

]−1

a(δ̂(Ŵ ))
d−→ χ2

#a.

(Note W is not numerically invariant to the represen-
tation of the restriction.)

Distance principle statistic is by

J(δ̂r(Ŝ
−1), Ŝ−1)− J(δ̂u(Ŝ−1), Ŝ−1)

d−→ χ2
#a,

where J is 2n times the minimized objective function:

J(δ̂, Ŝ−1) ≡ ngn(δ̂)′Ŝ−1gn(δ̂)

≡ 1
n

(Y − Zδ̃)′XŜ−1X′(Y − Zδ̃)

LM statistic is on Majajan 7-7–12 or D&M 617.

Note that unlike the Wald, these statistics—which are nu-
merically equal in finite samples—are only asymptotically
chi squared under efficient GMM. If the hypothesis’ restric-
tions are linear and the weighting matrix is optimally chosen,
they are also numerically equal to the Wald statistic.

Efficient GMM (Hayashi 212–5; D&M 588-9, 597–8, 607–8) Lower
bound Avar(δ̂(Ŵ )) ≥ (Σ′xzS

−1Σxz)−1 is achieved if Ŵ cho-

sen so that W ≡ plim Ŵ = S−1. Two-step efficient GMM:

1. Calculate δ̂(Ŵ ) for some Ŵ (usually S−1
xx ; use residuals

ε̂i ≡ yi − z′iδ̂(Ŵ ) to obtain a consistent estimator Ŝ of
S.

2. Calculate δ̂(Ŝ−1).

Note the requirement of estimating Ŝ−1 harms small-sample
properties, since it requires the estimation of fourth mo-
ments. Efficient GMM is often outperformed in bias and

variance by equally-weighted GMM (Ŵ = I) in finite sam-
ples.

Testing overidentifying restrictions (Hayashi 217–21; Mahajan 7-

13–6; D&M 232–7, 615–6) Assuming overidentification (K > L),

a consistent estimator Ŝ (ensured by assumption 6), and as-
sumptions 1–5, then

J ≡ ngn(δ̂(Ŝ−1))′Ŝ−1gn(δ̂(Ŝ−1))
d−→ χ2

K−L.

To test a subset of orthogonality conditions (as long as K1

remaining—non-suspect—instruments are enough to ensure
identification), calculate J1 statistic using remaining instru-

ments, and C ≡ J − J1
d−→ χ2(K − K1) (this is a distance

principle test, since J is 2n times the minimized objective
function). In finite samples, use the leading submatrix of Ŝ
to calculate J1.
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Two-Stage Least Squares (Hayashi 226–31; D&M 215–24) Under as-
sumption 7 (conditional homoscedasticity), efficient GMM
becomes 2SLS. Minimizing normalized distance function

1

2nσ̂2
(Y − Zδ̃)′Px(Y − Zδ̃)

yields estimator

δ̂2SLS ≡ δ̂(Ŝ−1) = δ̂([σ2Sxx]−1) = δ̂(S−1
xx )

= (S′xzS
−1
xx Sxz)−1S′xzS

−1
xx sxy .

Note δ̂2SLS does not depend on σ̂2.

Asymptotic variance Avar(δ̂2SLS) = σ2(Σ′xzΣ−1
xxΣxz)−1 es-

timated by

̂Avar(δ̂2SLS) ≡ σ̂2(S′xzS
−1
xx Sxz)−1

≡ σ̂2n(Z′PxZ)−1

with σ̂2 ≡ 1
n

∑
i(yi − z′iδ̂2SLS)2.

If errors are heteroscedastic, 2SLS is inefficient GMM. Ro-

bust covariance estimate (since Ŵ = S−1
xx ) is

̂Avar(δ̂2SLS) =

(S′xzS
−1
xx Sxz)−1S′xzS

−1
xx ŜS

−1
xx Sxz(S′xzS

−1
xx Sxz)−1.

Other characterizations of 2SLS minimize ‖Px(Y −Zδ)‖2 =
(Y − Zδ)′Px(Y − Zδ), or else note:

δ̂2SLS = (Z′X(X′X)−1X′Z)−1Z′X(X′X)−1X′Y

= (Z′PxZ)−1Z′PxY

where the projection matrix Px ≡ X(X′X)−1X′. So can
view 2SLS as:

1. IV regression of Y (or PxY ) on Z with PxZ (fitted val-
ues from regressing Z on X) as instruments, or;

2. OLS regression of Y (or PxY ) on PxZ (fitted values
from regressing Z on X)—this is why it’s called “two-
stage least squares.”

Caution: Don’t view standard errors reported by these re-
gressions are relevant for 2SLS, since they ignore errors from
“first stage” (i.e., calculation of fitted values PxZ).

Durbin-Wu-Hausman test (D&M 237–42; MaCurdy) Suppose we
do not know whether certain regressors are endogenous or
not, and therefore whether or not they need to be included
as instruments. Assuming endogeneity, OLS will be incon-
sistent and we prefer 2SLS; assuming exogeneity, both OLS
and 2SLS estimates will be consistent and we prefer OLS (it
is BLUE, and unbiased under appropriate assumptions).

Test by estimating either artificial regression using OLS:

Y = Zβ + PxZ
∗δ + ε̂

Y = Zβ +MxZ
∗η + ε̌;

i.e., including either fitted values or residuals from a first-
stage regression of suspect regressors Z∗ on known instru-
ments X. If Z∗ are exogenous, the coefficient δ or η should
be zero.

Interpretation note: although the test is often interpreted as
a test for exogeneity, the test is actually for the consistency
of the OLS estimate. OLS can be consistent even if Z∗ are
endogenous.

Analogous test will work for nonlinear model as long as sus-
pect regressors Z∗ enter linearly; if Z∗ enter nonlinearly,
failure is due to Jensen’s inequality.

1.16 Linear multiple equation GMM

See Hayashi 284 for summary of multiple-equation GMM es-
timators. This material is also covered (with slightly different
notation—notably the exchange of x with z—in Mahajan 7.

Linear multiple-equation GMM model (Hayashi 259–265, 269–

70, 274–5) Hayashi 270 summarizes comparison to single-
equation GMM.

Model has M linear equations, where equation m has Lm
regressors and Km instruments. Assumptions are exactly
parallel to single-equation GMM.

1. Each equation must satisfy its (equation-by-equation)
rank condition for identification.

2. The vector of all (yi, zi,xi) must be jointly ergodic
stationary—this is stronger than equation-by-equation
ergodic stationarity.

3. Asymptotic normality requires that {gi} be a mds with
nonsingular second moment, where

gi︸︷︷︸∑
Km×1

≡

 xi1εi1
...

xiMεiM

 .
By ergodic stationary mds CLT, S∑

Km×
∑
Km =

E[gig
′
i] where

S ≡ lim
n→∞

Var[
√
nḡ] = Avar(ḡ) = Avar( 1

n

∑
gi)

=

 E[εi1εi1xi1x′i1] · · · E[εi1εiMxi1x′iM ]
...

. . .
...

E[εiMεi1xiMx′i1] · · · E[εiMεiMxiMx′iM ]

 .
4. Consistent estimation of S requires finite fourth mo-

ments E[(ximkzihj)
2] for all k = 1, . . . ,Km; j =

1, . . . , Lh; and m, h = 1, . . . ,M .

5. Conditional homoscedasticity becomes
E[εimεih|xim,xih] = σmh for all m, h = 1, . . . ,M ;
in this case

S =

 σ11 E[xi1x′i1] · · · σ1M E[xi1x′iM ]
...

. . .
...

σM1 E[xiMx′i1] · · · σMM E[xiMx′iM ]

 .

Linear multiple-equation GMM estimator (Hayashi 266-7,

270–3) Hayashi 270 summarizes comparison to single-equation
GMM. As in single-equation GMM case, δ̂GMM minimizes

1
2n2 (Y − Zδ̃)′XŴX′(Y − Zδ̃), hence

δ̂GMM ≡ (S′xzŴSxz)−1S′xzŴsxy

≡ (Z′XŴX′Z)−1Z′XŴX′Y,

(See Hayashi 267 for huge partitioned matrix representation;
can also be written with Y , ε, and β stacked vectors, and X
and Z block matrices), where

Sxz︸︷︷︸∑
Km×

∑
Lm

≡


1
n

∑
xi1z′i1

. . .
1
n

∑
xiMz′iM

 ,

sxy︸︷︷︸∑
Km×1

≡


1
n

∑
xi1yi1
...

1
n

∑
xiMyiM

 .

1. If each equation is exactly identified, then choice of
weighting matrix doesn’t matter, and multiple-equation
GMM is numerically equivalent to equation-by-equation
IV estimation.

2. Equation-by-equation GMM corresponds to using a
block diagonal weighting matrix.

3. Assuming overidentification, efficient multiple-equation
GMM will be asymptotically more efficient than
equation-by-equation efficient GMM; they will only be
asymptotically equivalent if efficient weighting matrix
is block diagonal (i.e., if E[εimεihximx′ih] = 0 for all
m 6= h; under conditional homoscedasticity, this is
E[εimεih] = 0).

Full-Information Instrumental Variables Efficient (Hayashi

275–6; Mahajan 7–16-7) Efficient GMM estimator with:

• Conditional homoscedasticity (E(εε′|X) = ΣM×M ⊗
In×n).
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Weighting matrix is Ŝ−1, where

Ŝ ≡ 1
n

∑
i

XiΣ̂X
′
i,

=


σ̂11

1
n

∑
i xi1x′i1 · · · σ̂1M

1
n

∑
i xi1x′iM

...
. . .

...
σ̂M1

1
n

∑
i xiMx′i1 · · · σ̂MM

1
n

∑
i xiMx′iM

 ,
and Xi the

∑
Km×M block-diagonal matrix of instruments

for the ith observation; and

Σ̂ ≡ 1
n

∑
i

ε̂iε̂
′
i,

or

σ̂mh ≡ 1
n

∑
i

ε̂imε̂ih

= 1
n

∑
i

(yim − z′imδ̂m)(yih − z′ihδ̂h)

for some consistent estimator δ̂m of δm (usually 2SLS).

Suppose we have linearity; joint ergodic stationarity; orthog-
onality; rank condition; mds with finite second moments;
conditional homoscedasticity; and E[zimz′ih] exists and is fi-

nite for all m, h. Then δ̂FIVE is consistent, asymptotically
normal, and efficient.

Three-Stage Least Squares (Hayashi 276–9, 308; Mahajan 7–17;

MaCurdy) Efficient GMM estimator with:

• Conditional homoscedasticity (E(εε′|X) = ΣM×M ⊗
In×n),

• The set of instruments the same across equations (X =
IM×M ⊗ X̃n×K , where X̃ are the instruments for each
equation).

Weighting matrix is Ŝ−1 = Σ̂−1 ⊗ ( 1
n

∑
i x̃ix̃

′
i)
−1 = Σ̂−1 ⊗

( 1
n
X̃′X̃)−1, where Σ̂ = 1

n

∑
i ε̂iε̂

′
i is the matrix of σ̂ calcu-

lated as in FIVE using 2SLS residuals. Normalized distance
function

1
2n

(Y − Zδ̃)′(Σ̂−1 ⊗ PX̃)(Y − Zδ̃)
yields estimator

δ̂3SLS =
[
Z′(Σ̂−1 ⊗ PX̃)Z

]−1
Z′(Σ̂−1 ⊗ PX̃)y

=
[
Ẑ′(Σ̂−1 ⊗ I)Ẑ

]−1
Ẑ′(Σ̂−1 ⊗ I)y,

where Ẑ ≡ (I ⊗ PX̃)Z are the fitted values from the “first-

stage” regression of the Zms on X̃.

̂Avar(δ̂3SLS) = n
[
Z′(Σ̂−1 ⊗ PX̃)Z

]−1
.

Suppose we have linearity; joint ergodic stationarity; orthog-
onality; rank condition; mds with finite second moments;
conditional homoscedasticity; E[zimz′ih] exists and is finite
for all m, h; and xim = x̃i (common instruments). Then

δ̂3SLS is consistent, asymptotically normal, and efficient.

3SLS is more efficient than multiple-equation 2SLS unless
either

1. Σ is diagonal, in which case the two estimators are
asymptotically equivalent (although different in finite
samples),

2. Each structural equation is exactly identified, in which
case the system is exactly identified, and 2SLS and 3SLS
are computationally identical in finite samples.

Multiple equation Two-Stage Least Squares (MaCurdy) Effi-
cient GMM estimator with:

• Conditional homoscedasticity across equations (Σ =
σ2IM×M ),

• Conditional homoscedasticity (E(εε′|X) = ΣM×M ⊗
In×n = σ2InM×nM ),

• The set of instruments the same across equations (X =
IM×M ⊗ X̃n×K , where X̃ are the instruments for each
equation).

Weighting matrix doesn’t matter up to a factor of propor-
tionality, and is thus Ŝ−1 = I ⊗ ( 1

n

∑
i x̃ix̃

′
i)
−1 = I ⊗

( 1
n
X̃′X̃)−1. Normalized distance function

1

2n
(Y − Zδ̃)′


σ̂

2
1

. . .

σ̂2
M


−1

⊗ PX̃

 (Y − Zδ̃)

yields estimator

δ̂2SLS =
[
Z′(I⊗ PX̃)Z

]−1
Z′(I⊗ PX̃)y

= [Ẑ′Ẑ]−1Ẑ′y,

where Ẑ ≡ (I⊗PX̃)Z are the fitted values from the first-stage

regression. The covariance matrix simplifies since Σ = σ2I:

̂Avar(δ̂2SLS) = nσ̂2
[
Z′(I⊗ PX̃)Z

]−1

= nσ̂2[Ẑ′Ẑ]−1;

however, if Σ 6= σ2I, we instead get

= n[Ẑ′Ẑ]−1Ẑ′(Σ⊗ I)Ẑ[Ẑ′Ẑ]−1.

This is the same estimator as equation-by-equation 2SLS,
and the estimated within-equation covariance matrices are
also the same. Joint estimation gives the off-diagonal (i.e.,
cross-equation) blocks of of the covariance matrix.

Seemingly Unrelated Regressions (Hayashi 279–83, 309; Mahajan

7–17) [a.k.a. Joint Generalized Least Squares] Efficient GMM
estimator with:

• Conditional homoscedasticity (E(εε′|X) = ΣM×M ⊗
In×n),

• The set of instruments the same across equations (X =
IM×M ⊗ X̃n×K , where X̃ are the instruments for each
equation).

• The set of instruments the union of all the regressors.

Note this is the 3SLS estimator; it just has another name
when instruments are the union of all regressors. Here, all re-
gressors satisfy “cross” orthogonality: each is predetermined
in every other equation. Since regressors are a subset of
instruments, residuals used to estimate Σ̂ are from OLS.∗

Normalized distance function

1
2n

(Y − Zδ̃)′(Σ̂−1 ⊗ I)(Y − Zδ̃)

yields estimator

δ̂SUR =
[
Z′(Σ̂−1 ⊗ I)Z

]−1
Z′(Σ̂−1 ⊗ I)y,

̂Avar(δ̂SUR) = n
[
Z′(Σ̂−1 ⊗ I)Z

]−1
.

Suppose we have linearity; joint ergodic stationarity; orthog-
onality; mds with finite second moments; conditional ho-
moscedasticity; and xim =

⋃
m zim.† Then δ̂SUR is consis-

tent, asymptotically normal, and efficient.

If each equation is just identified, then all the regressors
must be the same and SUR is called the “multivariate regres-
sion”—it is numerically equivalent to equation-by-equation
OLS. If some equation is overidentified, we gain efficiency
over equation-by-equation OLS as long as some errors are
correlated across equations (i.e., σmh 6= 0); we are taking
advantage of exclusion restrictions vs. multivariate regres-
sion.

Multiple-equation GMM with common coefficients
(Hayashi 286–9) When all equations have same coefficient
vector δ ∈ RL,

1. Linearity becomes yim = z′imδ+εim for m = 1, . . . ,M ;
i = 1, . . . , n.

∗When regressors are a subset of instruments, 2SLS becomes OLS.
†We need neither the rank conditions (per Hayashi 285 q. 7) nor assumption that E[zimz′ih] exists and is finite for all m, h—it is implied.
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2. Rank condition requires full column rank of

Σxz︸︷︷︸∑
Km×L

≡

 E(xi1z′i1)
...

E(xiMz′iM )

 ;

Note here Σxz is a stacked rather than a block matrix,
and the rank condition is weaker than in the standard
multiple-equation GMM model—rather than requiring
equation-by-equation rank conditions, it suffices for one
equation to satisfy the rank condition.

δ̂GMM ≡ (S′xzŴSxz)−1S′xzŴsxy

(as in standard multiple-equation GMM estimator), but here

Sxz ≡


1
n

∑
xi1z′i1
...

1
n

∑
xiMz′iM

 , sxy ≡


1
n

∑
xi1yi1
...

1
n

∑
xiMyiM

 .
Imposition of conditional homoscedasticity (and other appro-
priate assumptions as above) gives common-coefficient ver-
sions of FIVE, 3SLS, and SUR estimators—the latter is the
“random effects” estimator.

Random effects estimator (Hayashi 289–90, 292–3) Efficient
multiple-equation GMM (SUR) where all equations have
same coefficient vector δ ∈ RL, conditional homoscedasticity
applies, and the set of instruments for all equations is the
union of all regressors.

We can write the model as yi = Ziδ + εi, where

yi︸︷︷︸
M×1

=

 yi1...
yiM

 , Zi︸︷︷︸
M×L

=

 z′i1
...

z′iM

 , εi︸︷︷︸
M×1

=

 εi1...
εiM

 ;

or as y = Zδ + ε by stacking the above (note Z is no longer
block-diagonal as it was for SUR). Then

δ̂RE =
(

1
n

∑
i

Z′iΣ̂
−1Zi

)−1(
1
n

∑
i

Z′iΣ̂
−1yi

)
,

=
[
Z′(Σ̂−1 ⊗ I)Z

]−1
Z′(Σ̂−1 ⊗ I)y;

Avar(δ̂RE) =
(
E[Z′iΣ

−1Zi]
)−1

;

̂Avar(δ̂RE) =
(

1
n

∑
i

Z′iΣ̂
−1Zi

)−1
,

= n
[
Z′(Σ̂−1 ⊗ I)Z

]−1
.

Pooled OLS (Hayashi 290–3, 309–10) Inefficient multiple-equation
GMM where all equations have same coefficient vector δ ∈
RL calculated by pooling all observations and applying OLS.

Equivalent to GMM with weighting matrix Ŵ = IM ⊗

( 1
n

∑
xix
′
i)
−1 rather than Σ̂−1 ⊗ ( 1

n

∑
xix
′
i)
−1. Caution:

Running a standard OLS will give incorrect standard errors.

Using matrix notation as in random effects estimator,

δ̂pOLS =
(

1
n

∑
i

Z′iZi
)−1(

1
n

∑
i

Z′iyi
)
,

= (Z′Z)−1Z′y;

Avar(δ̂pOLS) =
(
E[Z′iZi]

)−1
E[Z′iΣZi]

(
E[Z′iZi]

)−1
;

̂Avar(δ̂pOLS) =

(
1
n

∑
i Z
′
iZi

)−1(
1
n

∑
i Z
′
iΣ̂Zi

)(
1
n

∑
i Z
′
iZi

)−1
,

= n(Z′Z)−1
[
Z′(Σ̂⊗ I)Z

]
(Z′Z)−1.

1.17 ML for multiple-equation linear mod-
els

Structural form (D&M 212–3; Hayashi 529–30) Equations each
present one endogenous variable as a function of exogenous
and endogenous variables (and an error term). It is conven-
tional to write simultaneous equation models so that each
endogenous variable appears on the left-hand side of exactly
one equation, “but there is nothing sacrosancy about this
convention.”

Can also be written with the errors a function of all variables
(“one error per equation”)

Reduced form (D&M 213–4; Hayashi 529–30) Each endogenous vari-
able is on the left side of exactly one equation (“one endoge-
nous variable per equation”), and only predetermined vari-
ables (exogenous variables and lagged endogenous variables)
are on the right side (along with an error term).

Full Information Maximum Likelihood (Hayashi 526–35;

MaCurdy) Application of (potentially quasi-) maximum like-
lihood to 3SLS model with two extensions: iid (dependent
variables, regressors, and instruments), and conditionally
homoscedastic normally distributed errors. Model requires:

1. Linearity: ytm = z′tmδm + εtm for m = 1, . . . ,M ;

2. Rank conditions: E[xtz′tm] of full column rank for all
m;

3. E[xtx′t] nonsingular;

4. The system can be written as a “complete system” of
simultaneous equations—let yt be a vector of all en-
dogenous variables (those in yt1, . . . , ytM , zt1, . . . , ztM
but not in xt)∗:

• The number of endogenous variables equals the
numbers of equations (i.e., yt ∈ RM );

• Structural form

Γ︸︷︷︸
M×M

yt︸︷︷︸
M×1

+ B︸︷︷︸
M×K

xt︸︷︷︸
K×1

= εt︸︷︷︸
M×1

has nonsingular Γ;

5. εt|xt ∼ N(0,Σ) for positive definite Σ;

6. The vector that collects elements of yt (≡
yt1, . . . , ytM , zt1, . . . , ztM ) and xt is iid (stronger than
a jointly ergodic stationary mds);

7. (δ,Γ) is an interior points in a compact parameter space.

We can rewrite complete system as a reduced form

yt = Π′︸︷︷︸
−Γ−1B

xt + vt︸︷︷︸
Γ−1εt

.

xt is orthogonal to vector of errors vt, so this is a multivariate
regression model; given our normality assumption, we have

yt|xt ∼ N(−Γ−1B0xt,Γ
−1Σ(Γ−1)′),

and can estimate δ (on which Γ and B depend) and Σ by
maximum likelihood. Generally use concentrated ML to first
maximize over Σ to get Σ̂(δ) = 1

n

∑n
t=1(Γyt + Bxt)(Γyt +

Bxt)′ and then over δ.

Estimator is consistent and asymptotically normal (and
asymptotically equivalent to 3SLS†) even if εt|xt is not nor-
mal, as long as model is linear in y’s and errors (not neces-
sarily in regressors or parameters).

Maximum likelihood for SUR (Hayashi 525–7; MaCurdy P.S. 3 1(v))

A specialization of FIML, since SUR is 3SLS with the set of
instruments the set of all regressors. In FIML notation, that
means ztm is a subvector of xt; therefore yt just collects the
(sole remaining endogenous variables) yt1, . . . , ytM and the
structural form parameter Γ = I. We get a closed form ex-
pression (for some consistent estimator Σ̂), unlike for general
FIML:

δ̂(Σ̂) =
[
Z′(Σ̂− 1⊗ I)Z

]−1
Z′(Σ̂−1⊗ I)y.

LR statistic is valid even if the normality assumption fails to
hold.

∗Caution: yt does not merely collect yt1, . . . , ytM as usual.
†Per Hayashi 534 and MaCurdy, this asymptotic equivalence does not carry over to nonlinear (in endogenous variables and/or errors) equation systems; nonlinear FIML is more efficient than nonlinear 3SLS.
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Limited Information Maximum Likelihood (Hayashi 538–42;

MaCurdy) Consider the mth equation in the FIML frame-
work, and partition regressors into endogenous ỹt and
predetermined x̃t:

ytm = z′tm︸︷︷︸
1×Lm

δm︸︷︷︸
Lm×1

+εt = ỹ′t︸︷︷︸
1×Mm

γm︸︷︷︸
Mm×1

+ x̃′t︸︷︷︸
1×Km

βm︸︷︷︸
Km×1

+εt

where Lm = Mm +Km.

Combining with the relevant rows from the FIML reduced
form yt = Π′xt + vt gives a complete 1 +Mm equation sys-
tem:

Γ̄︸︷︷︸
(1+Mm)×(1+Mm)

ȳt︸︷︷︸
(1+Mm)×1

+ B̄︸︷︷︸
(1+Mm)×K

xt︸︷︷︸
K×1

= ε̄t︸︷︷︸
(1+Mm)×1

with

ȳt ≡
[
ytm
ỹt

]
, ε̄t ≡

[
εtmṽt

]
,

Γ̄ ≡
[
1 −γm′
0 IMm

]
, B̄ ≡

[
−β′m 0′

−Π̃′

]
,

and x̃t assumed to be the first Km elements of xt.

We estimate this structural form by ML as in FIML. Estima-
tor is consistent, and asymptotically normal even if εt|xt is
not normal, as long as model is linear in y’s and errors (not
necessarily in regressors or parameters). It has the same
asymptotic distribution as 2SLS (again, if specification is
linear), but generally outperforms 2SLS in finite samples.

1.18 Unit root processes

Integrated process of order 0 (Hayashi 558) A sequence of r.v.s
is an I(0) process if it:

1. is strictly stationary;

2. has long-run variance
∑
j∈Z γj ∈ (0,∞).

It can be written as δ + ut, where {ut} is a zero-mean sta-
tionary process with positive, finite long-run variance.

Integrated process of order d (Hayashi 559) A sequence of r.v.s
{ξt} is an I(d) process if its dth differences ∆dξt ≡ (1−L)dξt
are an I(0) process.

Unit root process (Hayashi 559–60, 565-6) An I(1) process, a.k.a.
difference-stationary process. If first-differences are mean-
zero, the process is called “driftless.”

If ∆ξt ≡ δ + ut ≡ δ + ψ(L)εt, the process can be written

ξt = ξ0 + δt+

t∑
s=1

us

= δt︸︷︷︸
time trend

+ψ(1)
t∑

s=1

εs︸ ︷︷ ︸
stoch. trend

+ ηt︸︷︷︸
stationary proc.

+(ξ0 − η0)

where ηt ≡ α(L)εt and αj = −(ψj+1 + ψj+2 + · · · ).

Eventually, the time trend (assuming there is one, i.e., δ 6= 0)
dominates the stochastic trend a.k.a. driftless random walk,
which dominates which dominates the stationary process.

Brownian motion (Hansen B2-5–7, 18, 21; Hayashi 567–72) The ran-
dom CADLAG (continuous from right, limit from left) func-
tion W : [0, 1]→ R (i.e., an element of D[0, 1]) such that:

1. W (0) = 0 almost surely;

2. For 0 ≤ t1 < t2 < · · · < tk ≤ 1, the random variables
W (t2)−W (t1), W (t3)−W (t2), . . . ,W (tk)−W (tk−1)
are independent normals withW (s)−W (t) ∼ N(0, s−t);

3. W (t) is continuous in t with probability 1.

If {ξt} is a driftless I(1) process, so that ∆ξt is zero-
mean I(0) with λ2 the long-run variance of {∆ξt} and
γ0 ≡ Var(∆ξt), then

1

T 2

T∑
t=1

ξ2
t−1

d−→ λ2

∫ 1

0
W (r)2 dr

1

T

T∑
t=1

∆ξtξt−1
d−→ 1

2

(
λ2W (1)2 − γ0

)
≡ σ2

∆ξ

∫ 1

0
W (u) dW (u)

jointly (i.e., the W (·) are all the same).∗

Function Central Limit Theorem (Hansen B2-9–17) [Donsker’s
Invariance Principle] A sequence {Yt} (where Y0 = 0) can
be mapped into a D[0, 1] function by

Wn(u) ≡ Ybunc

or equivalently by

≡ Yt for u ∈
[
t
n
, t+1
n

)
.

If Yt ≡
∑t
s=1 εs for {εs} iid white noise, then n−1/2Wn(u) ≡

n−1/2Ybunc
d−→ σεW (u), where W (·) is a Brownian motion.

Dickey-Fuller Test (Hayashi 573–7; Hansen B2-2–4) Test whether an
AR(1) process has a unit root (the null hypothesis). In case
without drift, use OLS to regress yt = ρyt−1 + εt where {εt}
iid white noise. Under null,

T (ρ̂T − 1) =
1
T

∑
t Yt−1εt

1
T2

∑
t Y

2
t−1

d−→
∫ 1
0 W (u) dW (u)∫ 1

0 W (u)2 du
≡ DF.

Tests with drift or non-zero mean covered in Hayashi.

1.19 Limited dependent variable models

Binary response model (D&M 512–4, 517–21; MaCurdy) Dependent
variable yt ∈ {0, 1} and information set at time t is Ωt. Then

E[yt|Ωt] = Pr[yt = 1|Ωt] ≡ F (

index︷ ︸︸ ︷
h(xt, β))︸ ︷︷ ︸

transformation

.

If E[yt|Ωt] = F (x′tβ), then FOCs for maximizing log like-
lihood are same as for weighted least squares with weights
[F (1 − F )]−1/2, which is reciprocal of squareroot of error
variance.

FOCs may not have a finite solution if data set doesn’t iden-
tify all parameters.

Probit model (Hayashi 451–2, 460, 466–7,477–8; D&M 514–5; MaCurdy)

Binary response model with E[yt|Ωt] = Φ(x′tβ).

Can also think of as y∗t = x′tβ + εt where εt ∼ N(0, 1) and
yt = Iy∗t>0.

Log likelihood function (QML if non-iid ergodic stationary)

∑
t

ytΦ(x′tβ) + (1− yt)(1− Φ(x′tβ))

is concave. MLE is identified iff E[xtx′t] is nonsingular. MLE
is consistent and asymptotically normal if identification con-
dition holds, and if {yt, xt} is ergodic stationary.

Logit model (Hayashi 508–1; D&M 515) Binary response model with
E[yt|Ωt] = Λ(x′tβ) where Λ(·) is the logistic function: Λ(v) ≡
exp(v)/(1 + exp(v)).

Can also think of as y∗t = x′tβ + εt where εt have extreme
value distribution and yt = Iy∗t>0.

Log likelihood function (QML if non-iid ergodic stationary)

∑
t

ytΛ(x′tβ) + (1− yt)(1− Λ(x′tβ))

is concave. MLE is identified iff E[xtx′t] is nonsingular. MLE
is consistent and asymptotically normal if identification con-
dition holds, and if {yt, xt} is ergodic stationary.

∗The last expression assumes {∆ξt} is iid white noise.
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Truncated response model (Hayashi 511–7; D&M 534–7; MaCurdy)

Model is yt = x′tβ0 + εt with εt|xt ∼ N(0, σ2
0 , but we only

see observations where yt > c for some known threshold c.
Density for each observation is

f(yt|yt > c) =
f(yt)

Pr(yt > c)
.

Note that if yt ∼ N(µ0, σ2
0),

E[yt|yt > c] = µ0 + σ0λ(v)

Var[yt|yt > c] = σ2
0 [1− λ′(v)] = σ2

0

[
1− λ(v)[λ(v)− v]

]
where v ≡ c−µ0

σ0
and λ(v) ≡ φ(v)

1−Φ(v)
is the inverse Mills ratio.

Could estimate

E[yt|yt > c] = x′tβ0 + σ0λ

(
c− x′tβ0

σ0

)
by nonlinear least squares, but ML is preferred because it is
asymptotically more efficient (and we have already imposed
full distributional assumptions).

Extension to nonlinear index function (in place of x′tβ) is
straighforward.

Tobit model (Hayashi 518–21; D&M 537–42; MaCurdy) [a.k.a. censored
response model] All observations are observed, but we do not
see yt if it is less than some known threshold c; “like a trun-
cated regression model combined with a probit model, with
the coefficient vectors restricted to be proportional to each
other.”

Model is
yt = max{x′tβ0 + εt︸ ︷︷ ︸

≡y∗t

, c}

where εt|xt ∼ N(0, σ2
0) and {xt, yt} iid.

Log-likelihood (a mix of density and mass) is∑
yt>c

log

[
1

σ0
φ

(
yt − x′tβ0

σ0

)]
+
∑
yt=c

log Φ

(
c− x′tβ0

σ0

)
.

Reparametrize to get concavity.

Sample selection model (D&M 542–5; MaCurdy) Rather than trun-
cating according to dependent variable, truncate on another
variable correlated with it. Suppose y∗t (e.g., wage), and z∗t
(e.g., weeks) are latent variables with[

y∗t
z∗t

]
=

[
x′tβ
w′tγ

]
+

[
ut
vt

]
,

[
ut
vt

]
∼ N

(
0,

[
σ2 ρσ
ρσ 1

])
,

and xt and wt exogenous or predetermined. We observe zt
(the sign of z∗t ) and yt = y∗t if z∗t > 0.

For observations where z∗t > 0 (and hence we observe y∗t ),
model becomes

yt = xt′β + ρσ
φ(w′tγ)

Φ(w′tγ)
+ εt.

Maximum Likelihood is best estimation technique (called
“generalized Tobit” here), but also sometimes estimated us-
ing either

1. Heckman two-step: first use probit estimation on all
observations to estimate γ̂, and then use OLS for ob-
servations where z∗t > 0 to estimate β̂; note the reported
covariance matrix in the second step will not be correct.

2. Nonlinear least squares: only uses any data on obser-
vations where z∗t > 0; generally has identification prob-
lems, since estimation is principally based on exploiting
nonlinearity of φ(·)/Φ(·).

1.20 Inequalities

Bonferroni’s Inequality (C&B 1.2.10–11) Bounds below the prob-
ability of an intersection in terms of individual events:
P (A ∩B) ≥ P (A) + P (B)− 1; or more generally

P

( n⋂
i=1

Ai

)
≥

n∑
i=1

P (Ai)− (n− 1) = 1−
n∑
i=1

P (AC
i ).

Boole’s Inequality (C&B 1.2.11) Bounds above the probability
of a union in terms of individual events: P

(⋃
i Ai

)
≤∑

i P (Ai).

Chebychev’s Inequality (C&B 3.6.1–2, 5.8.3; Greene 66) A widely
applicable but “necessarily conservative” inequality: for any
r > 0 and g(x) nonnegative,

P (g(X) ≥ r) ≤ E g(X)/r.

Letting g(x) = (x− µ)2/σ2 where µ = EX and σ2 = VarX
gives P (|X − µ| ≥ tσ) ≤ t−2.

See C&B 5.8.3 for a (complex) form that applies to sample
mean and variance rather than the (presumably unknown)
population values.

Markov’s Inequality (C&B 3.8.3) Like Chebychev, but imposes
conditions on Y to provide more information at equality
point. If P (Y ≥ 0) = 1 (i.e., Y is nonnegative) and
P (Y = 0) < 1 (i.e., Y not trivially 0), and r > 0, then
P (Y ≥ r) ≤ EY/r with equality iff P (Y = r) = 1− P (Y =
0).

Numerical inequality lemma (C&B 4.7.1) Let a and b be any
positive numbers, p and q positive (necessarily > 1) satis-
fying 1

p
+ 1

q
= 1. Then 1

p
ap + 1

q
bq ≥ ab, with equality iff

ap = bq .

Hölder’s Inequality (C&B 4.7.2) Let positive p and q (necessarily
> 1) satisfy 1

p
+ 1
q

= 1, then

|EXY | ≤ E |XY | ≤ (E |X|p)1/p(E |Y |q)1/q .

Cauchy-Schwarz Inequality (C&B 4.7.3; Wikipedia)

|EXY | ≤ E |XY | ≤
√

(EX2)(EY 2).

This is Hölder’s Inequality with p = q = 2. Implies that
Cov(X,Y ) ≤

√
Var(X) Var(Y ).

Equality obtains iff X and Y are linearly dependent.

Minkowski’s Inequality (C&B 4.7.5)

[E |X + Y |p]1/p ≤ [E |X|p]1/p + [E |Y |p]1/p

for p ≥ 1. Implies that if X and Y have finite pth moment,
then so does X + Y . Implies that E |X̄|p ≤ E |X|p.

Jensen’s Inequality (C&B 4.7.7) If g(·) is a convex function, then
E g(X) ≥ g(EX).

Equality obtains iff, for every line a+ bx tangent to g(x) at
x = EX, P (g(X) = a+ bX) = 1 (i.e., if g(·) is linear almost
everywhere in the support of X).

1.21 Thoughts on MaCurdy questions

Default answer

If we assume , we know that is consis-
tent, assuming correct specification and e.g., ergodic station-
arity, regressors orthogonal to the contemporary error term,
instruments orthogonal to the contemporary error term, ap-
propriate rank condition(s) for identification.

We can test the null hypothesis that , which corre-
sponds to = 0, using a Wald test on Model . The
statistic W ≡ is asymptotically distributed χ2( )
under the null, thus we can(not) reject the null hypothesis.

Note we have used normal/robust standard errors.

We can also test the null hypothesis using a distance prin-
ciple test, where model is the unrestricted model, and
model represents the restrictions imposed by the null
hypothesis. Using a suitably normalized distance func-
tion QT ≡ , the statistic LR ≡ 2T (Qr − Qu) =

is asymptotically distributed χ2( ) under the
null.

[Note we cannot use the multiple equation 2SLS estimates to
conduct a distance principle test, since generating a suitably
normalized distance function would require having estimates
for the variance of the error for each equation (along with
the SSR for each equation).]

[Note that the validity of this distance function requires the
restricted and unrestricted models to use the same weighting
matrix; since 6= , the test statistic is not
valid. However, given the regression output available, this is
the best we can do.]

Thus we can(not) reject the null hypothesis.

If we instead assume , our tests are no longer valid;
in this case is consistent (again, assuming correct
specification), so. . .
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Thoughts on models

1. Two models with and without a restriction is for LR
testing.

2. A model that includes only fitted values of an endoge-
nous variable is 2SLS.

3. A model that includes both a (potentially) endogenous
variable and its fitted values or residuals is for a DWH
test.

4. A model that includes lagged residuals is for testing
serial correlation.

Which model and standard errors to use

A less restrictive model will still be consistent and asymp-
totically more efficient; it is only harmed on finite sample
properties; same goes for robust standard errors.

Check for exact identification—models often simplify in these
cases.

Look ahead at all the questions; often it’s best to make an
assumption early, since later questions will ask you to give
up that assumption.

1. Heteroscedasticity across observations

• Parametrize and use GLS.

• Parametrize and use ML.

• Others?

2. Homoscedasticity (across observations)

• 3SLS is efficient GMM.

• FIML is asymptotically equivalent to 3SLS.

3. Homoscedasticity (across observations), uncorrelated
errors across equations (i.e., Φ diagonal)

• 3SLS is efficient GMM; 2SLS is not efficient GMM
(e.g., cannot use minimized distance function for
LR testing), but it is asymptotically distributed
identically to 3SLS

• 2SLS should generally have better finite sample
properties since it uses a priori knowledge of the
form of the S matrix (it assumes that S is σ2I; even
though it is actually only diagonal, the resulting es-
timator is numerically identical to what we would
get if we only assumed diagonal S: equation-by-
equation 2SLS).

• FIML, LIML, 3SLS, and 2SLS are all asymptoti-
cally equivalent.

4. Homoscedasticity (across observations), uncorrelated
errors across equations, homoscedasticity across equa-
tions (i.e., Φ = σ2I)

• 2SLS and 3SLS are both efficient GMM; they are
asymptotically equal and identically distributed.

• 2SLS should generally have better finite sample
properties since it uses a priori knowledge of the
form of the S matrix.

• FIML, LIML, 3SLS, and 2SLS are all asymptoti-
cally equivalent.

Hypothesis tests

Wald: basically always possible as long as estimator is con-
sistent and standard errors are calculated appropriately

• Be careful when using formulae from Hayashi; they are
generally based on the asymptotic variance matrix; re-
gression output doesn’t estimate this, it estimates 1

n
times the asymptotic variance matrix.

• State assumptions that justify consistency of estimation
technique, and standard errors used.

Distance principle / LR

• Need to use 2n times a suitably normalized maximized
objective function, i.e., one that satisfies “the prop-
erty”:

Var

[
√
T
∂QT

∂θ

∣∣∣∣
θ0

]
a
= ±

∂2QT

∂θ ∂θ′

∣∣∣∣
θ0

.

• For efficient GMM, QT ≡ 1
2

(X′e)′Ω̂−1(X′e) satisfies

“the property,” where Ω̂ consistently estimates the vari-
ance of

√
TX′e.

• We cannot generally use LR tests in the presence of
heteroscedasticity.

• For GMM estimators, must use efficient weighting ma-
trix for LR to be valid.

• Restricted and unrestricted estimates should use same
weighting matrix to be valid.

• Including the 2n and the normalization, use:

1. MLE: 2 · loglik

Reported value is usually loglik; required normalization
is 2.

• Valid no matter what if model is correctly specified.

2. LS: SSR/σ̂2 = e′e/σ̂2

Reported value is usually SSR; required normalization
is 1/σ̂2 .

• Invalid under heteroscedasticity.

• Validity under serial correlation???

• Make sure to use the same estimate σ̂2 in both re-
stricted and unrestricted models (typically SSR/n
or SSR/(n− k) from one of the two models).

3. 2SLS (single-equation): 1
σ̂2 e
′Pze

Reported value is usually e′Pze; required normalization
is 1/σ̂2 .

• Invalid under heteroscedasticity (not efficient
GMM).

• Validity under serial correlation???

• Make sure to use the same estimate for σ̂2 in
both restricted and unrestricted models (typically
SSR/n or SSR/(n−k) from one of the two models).

4. SUR / JGLS: e′(Φ̂−1 ⊗ I)e

Reported value is usually as desired; no normalization
is needed.

• Invalid under heteroscedasticity (across
observations–not efficient GMM; however, it’s fine
with heteroscedasticity across equations).

• Validity under serial correlation???

• Watch out: this isn’t actually valid, since re-
stricted and unrestricted estimation will use a dif-
ferent weighting matrix; however, we often com-
ment that this isn’t valid, but use it anyway since
that’s the best output available.

5. 2SLS (multiple-equation):

e′


σ̂

2
1

. . .

σ̂2
M


−1

⊗ Pz

 e

Reported value is usually e′(I⊗Pz)e; no normalization
can get us a usable distance function.

• Invalid under heteroscedasticity (across
observations—not efficient GMM; however, it’s
fine with heteroscedasticity across equations).

• Invalid if errors are correlated across equations
(i.e., Phi is not a diagonal matrix)

• Validity under serial correlation???

• I don’t think any of the regression programs actu-
ally give this output (they typically give e′(I⊗Pz)e;
maximizing this objective function gives the same
estimator, but not the same maximized objective
function); thus we can’t do LR testing here here,
even though it may be theoretically valid.

6. 3SLS: e′(Φ̂−1 ⊗ Pz)e

Reported value is usually as desired; no normalization
is needed.

• Invalid under heteroscedasticity (across
observations—not efficient GMM; however, it’s
fine with heteroscedasticity across equations).

• Validity under serial correlation???

• Watch out: this isn’t actually valid, since re-
stricted and unrestricted estimation will use a dif-
ferent weighting matrix; however, we often com-
ment that this isn’t valid, but use it anyway since
that’s the best output available.
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Multiple equation systems

1. Structural equation: can have multiple endogenous
variables; typically written as explicitly solved for one
endogenous variable.

2. Reduced form equation: only one endogenous vari-
able per equation (and one equation per endogenous
variable).

Instruments

1. Must be correlated with endogenous variable and un-
correlated with error.

2. Typically things that are predetermined—not meant
technically, they were actually determined before the
endogenous variable.

3. Predetermined variables, lagged endogenous variables,
interactions of the above.

4. In 2SLS, check the quality of instruments’ correlation
with endogenous variable (note this does not check the
lack of correlation with error) by looking at the first
stage regression:

• R2;

• t-statistics on each instrument;

• F -statistic for model as a whole, and potentially
F -statistic on excluded instruments.

Omitted variables

When we get asked to find out what happens if variables are
excluded (i.e., an incorrectly specified model is estimated), a
good tool is the Frisch-Waugh Theorem.

Finding probability limits/showing consistency

1. Solve as explicit function of data and use LLN with
CMT/Slutsky.

2. Solve as explicit function of data and show bias → 0
and variance → 0.

3. Solve explicitly, find the probability that |θ̂ − θ0| < ε,
and show the limit of this probability is 1 (per C&B
468).

4. MaCurdy: if the estimator is defined by LT (θ̂) ≡
1
T

∑
t lt(θ̂) = 0, show that lt(θ0) ∼ niid(0), and that

it satisfies an LLN so that LT (θ0)
p−→ 0.

5. MaCurdy: if the estimator is defined by minimiz-
ing HT (θ̂)′MTHT (θ̂) with HT ≡ 1

T

∑
t ht, show that

ht(θ0) ∼ niid(0), and that it satisfies an LLN so that

HT (θ0)
p−→ 0.

6. Aprajit/Hayashi: general consistency theorems with
and without compact parameter space.

Finding asymptotic distributions

1. CLTs for

• iid sample

• niid sample

• ergodic stationary process

• ergodic stationary mds

• MA(∞)

2. Delta method

3. MLE is asymptotically normal with variance equal to
inverse of Fisher info (for a single observation, not joint
distribution)

Unreliable standard errors

1. Remember standard errors are asymptotic estimates ex-
cept in Gaussian OLS; therefore finite sample inference
may be inaccurate.

2. If you run a multiple-stage regression technique in sepa-
rate stages (e.g., sticking in fitted values along the way).

3. If you stick something into the regression that doesn’t
“belong” (e.g., fitted values for a DWH test—although
for some reason this one may be OK, inverse Mills for
sample selection, . . . ).

4. Heteroscedastic errors (when not using robust standard
errors).

5. Serially correlated errors (when not using HAC stan-
dard errors).

6. Poor instruments (see above).

7. When regression assumptions fail ( e.g., using regular
standard errors when inappropriate, failure of fourth
moment assumptions, . . . ).

2 Microeconomics

2.1 Choice Theory

Rational preference relation (Choice 4; MWG 6–7) A binary rela-
tion % is a rational preference relation iff it satisfies

1. Completeness: ∀x, y, x % y∨y % x (NB: implies x % x);

2. Transitivity: ∀x, y, z, (x % y∧y % z) =⇒ x % z (which
rules out cycles, except where there’s indifference).

If % is rational, then � is both irreflexive and transitive; ∼
is reflexive, transitive, and symmetric; and x � y % z =⇒
x � z.

Choice rule (Choice 6) Given a choice set B and preference rela-
tion %, choice rule C(B,%) ≡ {x ∈ B : ∀y ∈ B, x % y}. This
correspondence gives the set of “best” elements of B.

If % is complete and transitive and |B| finite and non-empty,
then C(B,%) 6= ∅.

Revealed preference (Choice 6–8; MWG 11) We observe choices
and deduce a preference relation. Consider revealed pref-
erences C : 2B → 2B satisfying ∀A, C(A) ⊆ A. Assuming
the revealed preference sets are always non-empty, there is
a well-defined preference relation % (complete and transi-
tive) satisfying ∀A, C(A,%) = C(A) iff C satisfies HARP
(or WARP, and the set of budget sets contains all subsets of
up to three elements).

Houthaker’s Axiom of Revealed Preferences (Choice 6-88) A
set of revealed preferences C : 2B → 2B satisfies HARP iff
∀x, y ∈ U ∩ V such that x ∈ C(U) and y ∈ C(V ), it is also
the case that x ∈ C(V ) and y ∈ C(U). In other words, sup-
pose two different choice sets both contain x and y; if x is
preferred to all elements of one choice set, and y is preferred
to all elements of the other, then x is also preferred to all
elements of the second, and y is also preferred to all elements
of the first.

Weak Axiom of Revealed Preference (MWG 10–11) Choice
structure (B, C(·))—where B is the set of budget sets—
satisfies WARP iff B, B′ ∈ B; x, y ∈ B; x, y ∈ B′;
x ∈ C(B); y ∈ C(B′) together imply that x ∈ C(B′).
(Basically, HARP, but only for budget sets).

Generalized Axiom of Revealed Preference (Micro P.S. 1.3) A
set of revealed preferences C : A → B satisfies GARP if for
any sequences A1, . . . , An and x1, . . . , xn where

1. ∀i ∈ {1, . . . , n}, xi ∈ Ai;
2. ∀i ∈ {1, . . . , n− 1}, xi+1 ∈ C(Ai);

3. x1 ∈ C(An);

then xi ∈ C(Ai) for all i. (That is, there are no revealed
preference cycles except for revealed indifference.)

Utility function (Choice 9-13; MWG 9) Utility function u : X → R
represents % on X iff x % y ⇐⇒ u(x) ≥ u(y).

1. This turns choice rule into a maximization problem:
C(B,%) = argmaxy∈B u(y).

2. A preference relation can be represented by a utility
function only if it is rational (complete and transitive).

3. If |X| is finite, then any rational preference relation %
can be represented by a utility function; if |X| is infinite,
this is not necessarily the case.

4. If X ⊆ Rn, then % (complete, transitive) can be repre-
sented by a continuous utility function iff % is contin-
uous (i.e., limn→∞(xn, yn) = (x, y) and ∀n, xn % yn
imply x % y).

5. The property of representing % on X is ordinal (i.e.,
invariant to monotone increasing transformations).
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Interpersonal comparison (Choice 13) It is difficult to weigh util-
ity tradeoffs between people. Two possible systems are
Rawls’ “veil of ignorance” (which effectively makes all the
choices one person’s), and a system of “just noticeable dif-
ferences” (which suffers transitivity issues).

Continuous preference (Choice 11; MWG 46–7, Micro P.S. 1-5) % on
X is continuous if for any sequence {(xn, yn)}∞n=1 with
limn→∞(xn, yn) = (x, y) and ∀n, xn % yn, we have x % y.
Equivalently, % is continuous iff for all x, the upper and
lower contour sets of x are both closed sets. % is rational
and continuous iff it can be represented by a continuous util-
ity function.

Monotone preference (Choice 15–6; MWG 42–3) % is monotone iff
x ≥ y =⇒ x % y (i.e., more of something is better).

(MWG uses x� y =⇒ x � y; this is not equivalent.)

Strictly/strongly monotone iff x > y =⇒ x � y.

% is (notes) monotone iff u(·) is nondecreasing. % is strictly
monotone iff u(·) monotone increasing. Strictly monotone
=⇒ (notes or MWG) monotone. MWG monotone =⇒
locally non-satiated (on e.g., Rn+).

Locally non-satiated preference (Choice 15–6; MWG 42–3) % is lo-
cally non-satiated on X iff for any y ∈ X and ε > 0, there
exists x ∈ X such that ‖x − y‖ ≤ ε and x � y (i.e., there
are no “thick” indifference curves). % is locally non-satiated
iff u(·) has no local maxima in X. Strictly monotone =⇒
MWG monotone =⇒ locally non-satiated (on e.g., Rn+).

Convex preference (Choice 15–6; MWG 44–5) % is convex on X iff
(de facto, X is a convex set, and) x % y and x′ % y together
imply that ∀t ∈ (0, 1), tx+ (1− t)x′ % y (i.e., one never gets
worse off by mixing goods). Equivalently, % is convex on X
iff the upper contour set of any y ∈ X (i.e., {x ∈ X : x % y})
is a convex set. Can be interpreted as diminishing marginal
rates of substitution.

% is strictly convex on X iff X is a convex set, and x % y
and x′ % y (with x 6= x′) together imply that ∀t ∈ (0, 1),
tx+ (1− t)x′ � y.

% is (strictly) convex iff u(·) is (strictly) quasi-concave.

Homothetic preference (MWG 45, Micro P.S. 1.6) % is homothetic
iff for all λ > 0, x % y ⇐⇒ λx % λy. (MWG uses ∀λ ≥ 0,
x ∼ y =⇒ λx ∼ λy.) A continuous preference relation is
homothetic iff it can be represented by a utility function that
is homogeneous of degree one (note it can also be represented
by utility functions that aren’t).

Separable preferences (Choice p.18–9) Suppose % on X×Y is rep-
resented by u(x, y). Then preferences over x do not depend
on y iff there exist functions v : X → R and U : R × Y → R
such that U is increasing in its first argument and ∀(x, y),
u(x, y) = U(v(x), y). Note that this property is asymmet-
ric. Preferences over x given y will be represented by v(x),
regardless of y.

Quasi-linear preferences (Choice 20–1; MWG 45) Suppose % on
X = R× Y is complete and transitive, and that

1. The numeraire good (“good 1”) is valuable: (t, y) %
(t′, y) iff t ≥ t′;

2. Compensation is possible: For every y, y′ ∈ Y , there
exists some t ∈ R such that (0, y) ∼ (t, y′);

3. No wealth effects: If (t, y) % (t′, y′), then for all d ∈ R,
(t+ d, y) % (t′ + d, y′).

Then there exists a utility function representing % of the
form u(t, y) = t+ v(y) for some v : Y → R. (Note it can also
be represented by utility functions that aren’t of this form.)
Conversely, any preference relation % on X = R × Y rep-
resented by a utility function of the form u(t, y) = t + v(y)
satisfies the above conditions. (MWG uses slightly different
formulation.)

Lexicographic preferences (MWG 46) A preference relation % on
R2 defined by (x, y) % (x′, y′) iff x > x′ or x = x′ ∧ y ≥ y′.
Lexicographic preferences are complete, transitive, strongly
monotone, and strictly convex; however, they is not contin-
uous and cannot be represented by any utility function.

2.2 Producer theory

Competitive producer behavior (Producer 1–2) Firms choose a
production plan (technologically feasible set of inputs and
outputs) to maximize profits. Assumptions include:

1. Firms are price takers (applies to both input and output
markets);

2. Technology is exogenously given;

3. Firms maximize profits; should be true as long as

• The firm is competitive;

• There is no uncertainty about profits;

• Managers are perfectly controlled by owners.

Production plan (Producer 4) A vector y = (y1, . . . , yn) ∈ Rn
where an output has yk > 0 and an input has yk < 0.

Production set (Producer 4) Set Y ⊆ Rn of feasible production
plans; generally assumed to be non-empty and closed.

Free disposal (Producer 5) y ∈ Y and y′ ≤ y imply y′ ∈ Y .

Shutdown (Producer 5) 0 ∈ Y .

Nonincreasing returns to scale (Producer 5) y ∈ Y implies αy ∈
Y for all α ∈ [0, 1]. Implies shutdown.

Nondecreasing returns to scale (Producer 5, Micro P.S. 2-1) y ∈ Y
implies αy ∈ Y for all α ≥ 1. Along with shutdown, implies
that π(p) = 0 or π(p) = +∞ for all p.

Constant returns to scale (Producer 5) y ∈ Y implies αy ∈ Y
for all α ≥ 0; i.e., nonincreasing and nondecreasing returns
to scale.

Convexity (Producer 6) y, y′ ∈ Y imply ty + (1 − t)y′ ∈ Y for all
t ∈ [0, 1]. Vaguely “nonincreasing returns to specialization.”
If 0 ∈ Y , then convexity implies nonincreasing returns to
scale. Strictly convex iff for t ∈ (0, 1), the convex combina-
tion is in the interior of Y .

Transformation function (Producer 6, 24) A function T : Rn → R
with T (y) ≤ 0 ⇐⇒ y ∈ Y . Can be interpreted as the
amount of technical progress required to make y feasible.
The set {y : T (y) = 0} is the transformation frontier.

Kuhn-Tucker FOC gives necessary condition ∇T (y∗) = λp,
which means the price vector is normal to the production
possibility frontier at the optimal production plan.

Marginal rate of transformation (Producer 6–7) When the
transformation function T is differentiable, MRT between

goods k and l is MRTk,l(y) ≡ ∂T (y)
∂yl

/
∂T (y)
∂yk

. Measures

the extra amount of good k that can be obtained per unit
reduction of good l. Equals the slope of the transformation
frontier.

Production function (Producer 7) For a firm with only a single
output q (and inputs −z), defined as f(z) ≡ max q such that
T (q,−z) ≤ 0. Thus Y = {(q,−z) : q ≤ f(z)}, allowing for
free disposal.

Marginal rate of technological substitution (Producer 7)

When the production function f is differentiable, MRTS

between goods k and l is MRTSk,l(z) ≡ ∂f(z)
∂zl

/
∂f(z)
∂zk

. Mea-

sures how much of input k must be used in place of one unit
of input l to maintain the same level of output. Equals the
slope of the isoquant.

Profit maximization (Producer 7–8) The firm’s optimal produc-
tion decisions are given by correspondence y : Rn ⇒ Rn

y(p) ≡ argmax
y∈Y

p · y = {y ∈ Y : p · y = π(p)}.

Resulting profits are given by

π(p) ≡ sup
y∈Y

p · y.

Rationalization: profit maximization functions (Producer 9–

11, 13)

1. Profit function π(·) is rationalized by production set Y
iff ∀p, π(p) = supy∈Y p · y.

2. Supply correspondence y(·) is rationalized by produc-
tion set Y iff ∀p, y(p) ⊆ argmaxy∈Y p · y.

3. π(·) or y(·) is rationalizable if it is rationalized by some
production set.

4. π(·) and y(·) are jointly rationalizable if they are both
rationalized by the same production set.
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We seek a Y that rationalizes both y(·) and π(·). Consider an
“inner bound”: all production plans the firm chooses must
be feasible (Y I ≡

⋃
p∈P y(p)). Consider an “outer bound”:

Y can only include points that don’t give higher profits than
π(p) (Y O ≡ {y : p · y ≤ π(p) for all p ∈ P}).∗ A nonempty-
valued supply correspondence y(·) and profit function π(·)
on a price set are jointly rationalized by production set Y iff:

1. p · y = π(p) for all y ∈ y(p) (adding-up);

2. Y I ⊆ Y ⊆ Y O; i.e., p · y′ ≤ π(p) for all p, p′, and all
y′ ∈ y(p′) (Weak Axiom of Profit Maximization).

If we observe a firm’s choices for all positive price vectors on
an open convex set P , then necessary conditions for ratio-
nalizability include:

1. π(·) must be a convex function;

2. π(·) must be homogeneous of degree one; i.e., π(λp) =
λπ(p) for all p ∈ P and λ > 0;

3. y(·) must be homogeneous of degree zero; i.e., y(λp) =
y(p) for all p ∈ P and λ > 0.

Loss function (Producer 12) L(p, y) ≡ π(p) − p · y. This is the
loss from choosing y rather than the profit-maximizing fea-
sible production plan. The outer bound can be written
Y 0 = {y : infp L(p, y) ≥ 0}.

Hotelling’s Lemma (Producer 14) ∇π(p) = y(p), assuming differ-
entiable π(·). Equivalently, ∇pL(p, y)|p=p′ = ∇π(p′)−y = 0
for all y ∈ y(p′). An example of the Envelope Theorem. Im-
plies that if π(·) is differentiable at p, then y(p) must be a
singleton.

Substitution matrix (Producer 15–6) The Jacobian of the optimal
supply function, Dy(p) = [∂yi/∂pj ]. By Hotelling’s Lemma,
Dy(p) = D2π(p) (the Hessian of the profit function), hence
the substitution matrix is symmetric. Convexity of π(·) im-
plies positive semidefiniteness.

Law of Supply (Producer 16) (p′− p) · (y(p′)− y(p)) ≥ 0; i.e., sup-
ply curves are upward-sloping. Law of Supply is the finite-
difference equivalent of PSD of substitution matrix. Follows
from WAPM (p · y(p) ≥ p · y(p′)).

Rationalization: y(·) and differentiable π(·) (Producer 15)

y : P → Rn (the correspondence ensured to be a func-
tion by Hotelling’s lemma, given differentiable π(·)) and
differentiable π : P → R on an open convex set P ⊆ Rn are
jointly rationalizable iff

1. p · y(p) = π(p) (adding-up);

2. ∇π(p) = y(p) (Hotelling’s Lemma);

3. π(·) is convex.

The latter two properties imply WAPM. The second de-
scribes the FOC of the maximization problem, the third term
describes the second-order condition.

Rationalization: differentiable y(·) (Producer 16) Differentiable
y : P → Rn on an open convex set P ⊆ Rn is rationalizable
iff

1. y(·) is homogeneous of degree zero;

2. The Jacobian Dy(p) is symmetric and positive semidef-
inite.

We construct π(·) by adding-up, ensure Hotelling’s Lemma
by symmetry and homogeneity of degree zero, and ensure
convexity of π(·) by Hotelling’s lemma and PSD.

Rationalization: differentiable π(·) (Producer 17) Differentiable
π : P → R on a convex set P ⊆ Rn is rationalizable iff

1. π(·) is homogeneous of degree one;

2. π(·) is convex.

We construct y(·) by Hotelling’s Lemma, and ensure adding-
up by homogeneity of degree one; convexity of π(·) is given.

Rationalization: general y(·) and π(·) (Producer 17–9) y : P ⇒
Rn and π : P → R on a convex set P ⊆ Rn are jointly ratio-
nalizable iff for any selection ŷ(p) ∈ y(p),

1. p · ŷ(p) = π(p) (adding-up);

2. (Producer Surplus Formula) For any p, p′ ∈ P ,

π(p′) = π(p) +

∫ 1

0
(p′ − p) · ŷ(p+ λ(p′ − p)) dλ;

3. (p′ − p) · (ŷ(p′)− ŷ(p)) ≥ 0 (Law of Supply).

Producer Surplus Formula (Producer 17–20) π(p′) = π(p) +∫ 1
0 (p′ − p) · ŷ(p+ λ(p′ − p)) dλ.

1. “Works in the opposite direction of Hotelling’s Lemma:
it recovers the firm’s profits from its choices, rather than
the other way around.”

2. If π(·) is differentiable, integrating Hotelling’s Lemma
along the linear path from p to p′ gives PSF; however
PSF is more general (doesn’t require differentiability of
π(·)).

3. As written the integral is along a linear path, but it is
actually path-independent.

4. PSF allows calculation of change in profits when price of
good i changes by knowing only the supply function for
good i; we need not know the prices or supply functions

for other goods: π(p−i, b)− π(p−i, a) =
∫ b
a ŷi(pi) dpi.

Single-output case (Producer 22) For a single-output firm with
free disposal, production set described as {(q,−z) : z ∈
Rm+ , q ∈ [0, f(z)]}. With positive output price p,
profit-maximization requires q = f(z), so firms maximize
maxz∈Rm+ pf(z)− w · z, where w ∈ Rm+ input prices.

Cost minimization (Producer 22, Micro P.S. 2-4) For a fixed output
level q ≥ 0, firms minimize costs, choosing inputs according
to a conditional factor demand correspondence:

c(q, w) ≡ inf
z : f(z)≥q

w · z;

Z∗(q, w) ≡ argmin
z : f(z)≥q

w · z

= {z : f(z) ≥ q, and w · z = c(q, w)}.

Once these problems are solved, firms solve maxq≥0 pq −
c(q, w).

By the envelope theorem, ∂c
∂w

(w, q) = Z∗(q, w).

Rationalization: single-output cost function (Producer 23, Mi-

cro P.S. 2-2) Conditional factor demand function z : R×W ⇒
Rn and differentiable cost function c : R×W → R for a fixed
output q on an open convex set W ⊆ Rm of input prices are
jointly rationalizable iff

1. c(q, w) = w · z(q, w) (adding-up);

2. ∇wc(q, w) = z(q, w) (Shephard’s Lemma);

3. c(q, ·) is concave.

Other necessary properties follow from corresponding prop-
erties of profit-maximization, e.g.,

1. c(q, ·) is homogeneous of degree one in w;

2. Z∗(q, ·) is homogeneous of degree zero in w;

3. If Z∗(q, ·) is differentiable, then the matrix
DwZ∗(q, w) = D2

wc(q, w) is symmetric and negative
semidefinite;

4. Under free disposal, c(·, w) is nondecreasing in q;

5. If the production function has nondecreasing (nonin-
creasing) RTS, the average cost function c(q, w)/q is
nonincreasing (nondecreasing) in q;

6. If the production function is concave, the cost function
c(q, w) is convex in q.

Monopoly pricing (MWG 384–7) Suppose demand at price p is
x(p), continuous and strictly decreasing at all p for which
x(p) > 0. Suppose the monopolist faces cost function
c(q). Monopolist solves maxp px(p) − c(x(p)) for optimal
price, or maxq≥0 p(q)q − c(q) for optimal quantity (where
p(·) = x−1(·) is the inverse demand function). Further as-
sumptions:

∗If Y is convex and closed and has free disposal, and P = Rn+ \ {0}, then Y = YO .
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1. p(q), c(q) continuous and twice differentiable at all
q ≥ 0;

2. p(0) > c′(0) (ensures that supply and demand curves
cross);

3. There exists a unique socially optimal output level
qO ∈ (0,∞) such that p(qo) = c′(qo).

A solution qm ∈ [0, qo] exists, and satisfies FOC p′(qm)qm+
p(qm) = c′(qm). If p′(q) < 0, then p(qm) > c′(qm); i.e.,
monopoly price exceeds optimal price.

2.3 Comparative statics

Implicit function theorem (Producer 27–8) Consider x(t) ≡
argmaxx∈X F (x, t). Suppose:

1. F is twice continuously differentiable;

2. X is convex;

3. Fxx < 0 (strict concavity of F in x; together with con-
vexity of X, this ensures a unique maximizer);

4. ∀t, x(t) is in the interior of X.

Then the unique maximizer is given by Fx(x(t), t) = 0, and

x′(t) = −
Fxt(x(t), t)

Fxx(x(t), t)
.

Note by strict concavity, the denominator is negative, so x′(t)
and Fxt(x(t), t) have the same sign.

Envelope theorem (Clayton Producer I 6–8) Given a constrained op-
timization v(θ) = maxx f(x, θ) such that g1(x, θ) ≤ b1; . . . ;
gK(x, θ) ≤ bK , comparative statics on the value function are
given by:

∂v

∂θi
=

∂f

∂θi

∣∣∣∣
x∗
−

K∑
k=1

λk
∂gk

∂θi

∣∣∣∣
x∗

=
∂L
∂θi

∣∣∣∣
x∗

(for Lagrangian L) for all θ such that the set of binding con-
straints does not change in an open neighborhood.

Can be thought of as application first of chain rule, and then
of FOCs.

Envelope theorem (integral form) (Clayton Producer II 9–10)

[a.k.a. Holmstrom’s Lemma] Given an optimization v(q) =
maxx f(x, q), the envelope theorem gives us v′(q) =
f ′q(x(q), q). Integrating gives

v(q2) = v(q1) +

∫ q2

q1

∂f

∂q
(x(q), q) dq.

Increasing differences (Producer 30–1, Micro P.S. 2-4’) F : X × T →
R (with X, T ⊆ R) has ID (a.k.a. weakly increasing differ-
ences) iff for all x′ > x and t′ > t, F (x′, t′) + F (x, t) ≥
F (x′, t) + F (x, t′). Strictly/strongly increasing differences
(SID) iff F (x′, t′) + F (x, t) > F (x′, t) + F (x, t′).

Assuming F (·, ·) is sufficiently smooth, all of the following
are equivalent:

1. F has ID;

2. Fx(x, t) is nondecreasing in t for all x;

3. Ft(x, t) is nondecreasing in x for all t;

4. Fxt(x, t) ≥ 0 for all (x, t);

5. F (x, t) is supermodular.

Additional results:

1. If F (·, ·) and G both have ID, then for all α, β ≥ 0, the
function αF + βG also has ID.

2. If F has ID, and g1(·) and g2(·) are nondecreasing func-
tions, then F (g1(·), g2(·)) has ID.

3. Suppose h(·) is twice differentiable. Then h(x − t) has
ID in x, t iff h(·) is concave.

Supermodularity (Producer 37) F : X → Rn on a sublattice X is
supermodular iff for all x, y ∈ X, we have F (x ∧ y) + F (x ∨
y) ≥ F (x) + F (y).

If X is a product set, F (·) is supermodular iff it has ID in all
pairs (xi, xj) with i 6= j (holding other variables x−ij fixed).

Submodularity (Producer 41) F (·) is submodular iff −F (·) is su-
permodular.

Topkis’ Theorem (Producer 31–2, 8) If

1. F : X × T → R (with X, T ⊆ R) has ID,

2. t′ > t,

3. x ∈ X∗(t) ≡ argmaxξ∈X F (ξ, t), and x′ ∈ X∗(t′), then

min{x, x′} ∈ X∗(t) and max{x, x′} ∈ X∗(t′). In other
words, X∗(t) ≤ X∗(t′) in strong set order. This implies
supX∗(·) and inf X∗(·) are nondecreasing; if X∗(·) is single-
valued, then X∗(·) is nondecreasing.

If F : X × T → R (with X a lattice and T fully ordered) is
supermodular in x and has ID in (x, t); t′ > t; and x ∈ X∗(t)
and x′ ∈ X∗(t′), then (x∧x′) ∈ X∗(t) and (x∨x′) ∈ X∗(t′).
In other words, X∗(·) is nondecreasing in t in the stronger
set order.

Monotone Selection Theorem (Producer 32) Analogue of Top-
kis’ Theorem for SID. If F : X × T → R with X, T ∈ R has
SID, t′ > t, x ∈ X∗(t), and x′ ∈ X∗(t′), then x′ ≥ x.

Milgrom-Shannon Monotonicity Theorem (Producer 34)

X∗(t) ≡ argmaxx∈X F (x, t) is nondecreasing in t in SSO for
all sets X ∈ R iff it has the single-crossing condition (which
is non-symmetric): for all x′ > x and t′ > t,

F (x′, t) ≥ F (x, t) =⇒ F (x′, t′) ≥ F (x, t′), and

F (x′, t) > F (x, t) =⇒ F (x′, t′) > F (x, t′).

MCS: robustness to objective function perturbation
(Producer 34–5) [Milgrom-Shannon] X∗(t) ≡
argmaxx∈X [F (x, t) + G(x)] is nondecreasing in t in SSO
for all functions G : X → R iff F (·) has ID. Note Topkis
gives sufficiency of ID.

Complement inputs (Producer 40–2) Restrict attention to price
vectors (p, w) ∈ Rm+1

+ at which input demand correspon-
dence z(p, w) is single-valued. If production function f(z) is
increasing and supermodular, then z(p, w) is nondecreasing
in p and nonincreasing in w. That is, supermodularity of the
production function implies price-theoretic complementarity
of inputs.

If profit function π(p, w) is continuously differentiable, then
zi(p, w) is nonincreasing in wj for all i 6= j iff π(p, w) is
supermodular in w.

Substitute inputs (Producer 41–2) Suppose there are only two in-
puts. Restrict attention to price vectors (p, w) ∈ R3

+ at which
input demand correspondence z(p, w) is single-valued. If pro-
duction function f(z) is increasing and submodular, then
z1(p, w) is nondecreasing in w2 and z2(p, w) is nondecreas-
ing in w1. That is, submodularity of the production function
implies price-theoretic substitutability of inputs in the two
input case.

If there are ≥ 3 inputs, feedback between inputs with un-
changing prices makes for unpredictable results.

If profit function π(p, w) is continuously differentiable, then
zi(p, w) is nondecreasing in wj for all i 6= j iff π(p, w) is
submodular in w.

LeChatelier principle (Producer 42–45) Argument (a.k.a
Samuelson-LeChatelier principle) that firms react more
to input price changes in the long-run than in the short-
run, because it has more inputs that it can adjust. Does
not consistently hold; only holds if each pair of inputs are
substitutes everywhere or complements everywhere.

Suppose twice differentiable production function f(k, l) sat-
isfies either fkl ≥ 0 everywhere, or fkl ≤ 0 everywhere. Then
if wage wl increases (decreases), the firm’s labor demand will
decrease (increase), and the decrease (increase) will be larger
in the long-run than in the short-run.
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2.4 Consumer theory

x(p, w)

v=u(x)

22SS

x=h(p,v)
h=x(p,e)

��

v(p, w)

Roy: x=
−∇pv
∂v/∂w

rr
OO

v(p,e)=ū
e(p,v)=w

��
h(p, ū)

Adding-up: e=p·h
22

��

Slutsky:
∂xi
∂pj

+
∂xi
∂w

xj=
∂hi
∂pj

KK

e(p, ū)

Shephard: h=∇pe
rr

Budget set (Consumer 2) Given prices p and wealth w, B(p, w) ≡
{x ∈ Rn+ : p · x ≤ w}.

Utility maximization problem (Consumer 1–2, 6–8)

maxx∈Rn+ u(x) such that p · x ≤ w, or equivalently

maxx∈B(p,w) u(x). Assumes:

1. Perfect information,

2. Price taking,

3. Linear prices,

4. Divisible goods.

Construct Lagrangian L = u(x) + λ(w − p · x) +
∑
i µixi.

If u is concave and differentiable, Kuhn-Tucker conditions
(FOCs, nonnegativity, complementary slackness) are neces-
sary and sufficient. Thus ∂u/∂xk ≤ λpk with equality if
xk > 0. For any two goods consumed in positive quantities,

pj/pk =
∂u/∂xj
∂u/∂xk

≡ MRSjk. The Lagrange multiplier on the

budget constraint λ is the value in utils of an additional unit
of wealth; i.e., the shadow price of wealth or marginal utility
of wealth or income.

Indirect utility function (Consumer 3–4) v(p, w) ≡
supx∈B(p,w) u(x). Homogeneous of degree zero.

Marshallian demand correspondence (Consumer 3–4) [a.k.a.
Walrasian or uncompensated demand] x : Rn+ × R+ ⇒
Rn+ with x(p, w) ≡ {x ∈ B(p, w) : u(x) = v(p, x)} =
argmaxx∈B(p,w) u(x).

1. Given continuous preferences, x(p, w) 6= ∅ for p � 0
and w ≥ 0.

2. Given convex preferences, x(p, w) is convex-valued.

3. Given strictly convex preferences, x(p, w) is single-
valued.

4. x(p, w) is homogeneous of degree zero.

Walras’ Law (Consumer 4) Given locally non-satiated preferences:

1. For x ∈ x(p, w), we have p ·x = w (i.e., Marshallian de-
mand is on budget line, and we can replace inequality
constraint with equality in consumer problem);

2. For z ∈ z(p) (where z(·) is excess demand z(p) ≡
x(p, p · e)− e), we have p · z = 0;

3. v(p, w) is nonincreasing in p and strictly increasing in
w.

Expenditure minimization problem (Consumer 9) minx∈Rn+ p ·
x such that u(x) ≥ ū; where ū > u(0) and p� 0. Finds the
cheapest bundle that yields utility at least ū. Equivalent to
cost minimization for a single-output firm with production
function u.

If p� 0, u(·) is continuous, and ∃x̂ such that u(x̂) ≥ ū, then
EMP has a solution.

Expenditure function (Consumer 9) e(p, ū) ≡ minx∈Rn+ p · x such

that u(x) ≥ ū.

Hicksian demand correspondence (Consumer 9) [a.k.a. com-
pensated demand] h : Rn+ × R+ ⇒ Rn+ with h(p, ū) ≡ {x ∈
Rn+ : u(x) ≥ ū} = argminx∈Rn+

p · x such that u(x) ≥ ū.

Relating Marshallian and Hicksian demand (Consumer 10)

Suppose preferences are continuous and locally non-satiated,
and p� 0, w ≥ 0, ū ≥ u(0). Then:

1. x(p, w) = h(p, v(p, w)),

2. e(p, v(p, w) = w,

3. h(p, ū) = x(p, e(p, ū)),

4. v(p, e(p, ū) = ū.

Rationalization: h and differentiable e (Consumer 11) Hicksian
demand function h : P ×R+ → Rn+ and differentiable expen-
diture function e : P ×R→ R on an open convex set P ⊆ Rn
are jointly rationalizable by expenditure-minimization for a
given utility level ū of a monotone utility function iff:

1. e(p, ū) = p · h(p, ū) (adding-up—together with Shep-
hard’s Lemma, ensures e(·, ū) is homogeneous of degree
one in prices);

2. ∇pe(p, ū) = h(p, ū) (Shephard’s Lemma—equivalent to
envelope condition applied to e(p, ū) = minh p · h);

3. e(·, ū) is concave in prices.

Rationalization: differentiable h (Consumer 12) A continuously
differentiable Hicksian demand function h : P ×R+ → Rn+ on
an open convex set P ⊆ Rn is rationalizable by expenditure-
minimization with a monotone utility function iff

1. Hicksian demand is increasing in ū; and

2. The Slutsky matrix

Dph(p, ū) =


∂h1(p,ū)
∂p1

· · · ∂hn(p,ū)
∂p1

...
. . .

...
∂h1(p,ū)
∂pn

· · · ∂hn(p,ū)
∂pn


is symmetric,

3. Slutsky matrix is negative semidefinite (since e(·, ū) is
concave in prices),

4. Slutsky matrix satisfies Dph(p, ū)p = 0 (i.e., h(·, ū is
homogeneous of degree zero in prices).

Rationalization: differentiable x (?) Slutsky matrix can be
generated using Slutsky equation. Rationalizability requires
Marshallian demand to be homogeneous of degree 0, and
the Slutsky matrix to be symmetric and negative semidefi-
nite. [Potentially also positive everywhere and/or increasing
in w?]

Rationalization: differentiable e (?) Rationalizability re-
quires e to be:

1. Homogeneous of degree one in prices;

2. Concave in prices;

3. Increasing in ū;

4. Positive everywhere, or equivalently nondecreasing in
all prices.

Slutsky equation (Consumer 13–4) Relates Hicksian and Marshal-
lian demand. Suppose preferences are continuous and lo-
cally non-satiated, p� 0, and demand functions h(p, ū) and
x(p, w) are single-valued and differentiable. Then for all i, j,

∂xi(p, w)

∂pj︸ ︷︷ ︸
Total

=
∂hi(p, u(x(p, w)))

∂pj︸ ︷︷ ︸
Substitution

−
∂xi(p, w)

∂w
xj(p, w)︸ ︷︷ ︸

Wealth

,

or more concisely, ∂xi
∂pj

= ∂hi
∂pj
− ∂xi

∂w
xj .

Derived by differentiating hi(p, ū) = xi(p, e(p, ū)) with re-
spect to pj and applying Shephard’s lemma.

Normal good (Consumer 15) Marshallian demand xi(p, w) increas-
ing in w. By Slutsky equation, normal goods must be regular.

Inferior good (Consumer 15) Marshallian demand xi(p, w) decreas-
ing in w.

Regular good (Consumer 15) Marshallian demand xi(p, w) de-
creasing in pi.

Giffen good (Consumer 15) Marshallian demand xi(p, w) increas-
ing in pi. By Slutsky equation, Giffen goods must be infe-
rior.

Substitute goods (Consumer 15–6) Goods i and j substitutes iff
Hicksian demand hi(p, ū) is increasing in pj . Symmetric re-
lationship. In a two-good world, the goods must be substi-
tutes.

Complement goods (Consumer 15–6) Goods i and j complements
iff Hicksian demand hi(p, ū) is decreasing in pj . Symmetric
relationship.
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Gross substitute (Consumer 15–7) Good i is a gross substitute for
good j iff Marshallian demand xi(p, w) is increasing in pj .
Not necessarily a symmetric relationship.

Gross complement (Consumer 15–7) Good i is a gross complement
for good j iff Marshallian demand xi(p, w) is decreasing in
pj . Not necessarily a symmetric relationship.

Engle curve (Consumer 15–6) [a.k.a. income expansion curve] For
a given price p, the locus of Marshallian demands at various
wealth levels.

Offer curve (Consumer 16–7) [a.k.a. price expansion path] For a
given wealth w and prices (for goods other than good i) p−i,
the locus of Marshallian demands at various prices pi.

Roy’s identity (Consumer 17–8) Gives Marshallian demand from
indirect utility:

xi(p, w) = −
∂v(p, w)/∂pi

∂v(p, w)/∂w
,

Derived by differentiating v(p, e(p, ū)) = ū with respect
to p and applying Shephard’s lemma. Alternately, by ap-
plying envelope theorem to utility maximization problem
v(p, w) = maxx : p·x≤w u(x) (giving ∂v

∂w
= ∂L

∂w
= λ and

∂v
∂p

= ∂L
∂p

= −λx.)

Consumer welfare: price changes (Consumer 20-2, 4) Welfare
change in utils when prices change from p to p′ is v(p′, w)−
v(p, w), but because utility is ordinal, this is meaningless.
More useful to have dollar-denominated measure. So mea-
sure amount of additional wealth required to reach some ref-
erence utility, generally either previous utility (CV) or new
utility (EV).

If preferences are quasi-linear, then CV = EV.

On any range where the good in question is either normal or
inferior, min{CV,EV} ≤ CS ≤ max{CV,EV}.

Compensating variation (Consumer 21, 3) How much less wealth
consumer needs to achieve same utility at prices p′ as she
had at p (compensating for price change—consumer faces
both new prices and new wealth).

CV ≡ e(p, ū)− e(p′, ū)

= w − e(p′, ū)

which gives—when only price i is changing—the area to the
left of the Hicksian demand curve corresponding to the old
utility u by the consumer surplus formula and Shephard’s
Lemma:

=

∫ pi

p′i

∂e(p, ū)

∂pi
dpi =

∫ pi

p′i

hi(p, ū) dpi.

Equivalent variation (Consumer 21, 3) How much additional ex-
penditure is required at old prices p to achieve same utility
as consumption at p′ (equivalent to price change—consumer
faces either new prices or revised wealth).

EV ≡ e(p, ū′)− e(p′, ū′)
= e(p, ū′)− w

which gives—when only price i is changing—the area to the
left of the Hicksian demand curve corresponding to the new
utility u′ by the consumer surplus formula and Shephard’s
Lemma:

=

∫ pi

p′i

∂e(p, ū′)

∂pi
dpi =

∫ pi

p′i

hi(p, ū
′) dpi.

Marshallian consumer surplus (Consumer 23–4) Area to the left
of Marshallian demand curve: CS ≡

∫ pi
p′i
xi(p, w) dpi.

Price index (Consumer 25–6) Given a basket of goods consumed at
quantity x given price p, and quantity x′ given price p′,

1. Laspeyres index: p′·x
p·x = p′·x

e(p,ū)
(basket is old pur-

chases). Overestimates welfare effects of inflation due
to substitution bias.

2. Paasche index: p′·x′
p·x′ =

e(p′,ū′)
p·x′ (basket is new pur-

chases). Underestimates welfare effects of inflation.

3. Ideal index:
e(p′,ū)
e(p,ū)

for some fixed utility level ū, gener-

ally either u(x) or u(x′); the percentage compensation
in the wealth of a consumer with utility ū needed to
make him as well off at the new prices as he was at the
old ones.

Paasche≤ Ideal≤ Laspeyres. Substitution biases result from
using the same basket of goods at new and old prices. Include

1. New good bias,

2. Outlet bias.

Aggregating consumer demand (Consumer 29–32)

1. Can we predict aggregate demand knowing only aggre-
gate wealth (not distribution)? True iff indirect utility
functions take Gorman form: vi(p, wi) = ai(p)+b(p)wi
with the same function b(·) for all consumers.

2. Can aggregate demand be explained as though there
were a single “positive representative consumer”?

3. (If 2 holds), can the welfare of the representative con-
sumer be used as a proxy for some welfare aggregate of
individual consumers? (i.e., Do we have a “normative
representative consumer”?)

2.5 Choice under uncertainty

Lottery (Uncertainty 2–4) A vector of probabilities adding to 1 as-
signed to each possible outcome (prize). The set of lotteries
for a given prize space is convex.

Preference axioms under uncertainty (Uncertainty 5–6) In ad-
dition to (usual) completeness and transitivity, assume pref-
erences are:

1. Continuous: For any p, p′, p′′ ∈ P with p % p′ % p′′,
there exists α ∈ [0, 1] such that αp+ (1− α)p′′ ∼ p′.

2. Independent: [a.k.a. substitution axiom] For any p,
p′, p′′ ∈ P and α ∈ [0, 1], we have p % p′ ⇐⇒
αp+ (1− α)p′′ % αp′ + (1− α)p′′.

Expected utility function (Uncertainty 6–10) Utility function
u : P → R has expected utility form iff there are numbers
(u1, . . . , un) for each of the n (certain) outcomes such that
for every p ∈ P, u(p) =

∑
i pi · ui.

Equivalently, for any p, p′ ∈ P, α ∈ [0, 1], we have
u(αp+ (1− α)p′) = αU(p) + (1− α)U(p′).

Unlike a more general utility function, an expected utility
functions is not merely ordinal—it is not invariant to any
increasing transformation, only to affine transformations. If
u(·) is an expected utility representation of %, then v(·) is
also an expected utility representation of % iff ∃a ∈ R, ∃b > 0
such that v(p) = a+ bu(p) for all p ∈ P.

Preferences can be represented by an expected utility func-
tion iff they are complete, transitive, and satisfy continuity
and independence (assuming |P| < ∞; otherwise we also
need the “sure thing principle”). Obtains since both require
indifference curves to be parallel straight lines.

Bernoulli utility function (Uncertainty 12) Assuming prize space
X is an interval on the real line, Bernoulli utility function
u : X → R assumed increasing and continuous.

von Neumann-Morgenstern utility function (Uncertainty 12)

An expected utility representation of preferences over lot-
teries characterized by a cdf over prizes X (an interval on
the real line). If F (x) is the probability of receiving less
than or equal to x, and u(·) is the Bernoulli utility function,
then vN-M utility function U(F ) ≡

∫
R u(x) dF (x).

Risk aversion (Uncertainty 12–4) A decision maker is (strictly) risk-
averse iff for any non-degenerate lottery F (·) with expected
value EF =

∫
R x dF (x), the lottery δEF which pays EF for

certain is (strictly) preferred to F .

Stated mathematically,
∫
u(x) dF (x) ≤ u(

∫
R x dF (x)) for all

F (·), which by Jensen’s inequality obtains iff u(·) is concave.

The following notions of u(·) being “more risk-averse” then
v(·) are equivalent:

1. F %u δx =⇒ F %v δx for all F and x.∗

2. Certain equivalent c(F, u) ≤ c(F, v) for all F .

∗Note this does not mean F %u G =⇒ F %v G where G is also a risky prospect—this would be a stronger version of “more risk averse.”
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3. u(·) is “more concave” than v(·); i.e., there exists an
increasing concave function g(·) such that u = g ◦ v.

4. Arrow-Pratt coefficient A(x, u) ≥ A(x, v) for all x.

Certain equivalent (Uncertainty 13–4) c(F, u) is the certain pay-
out such that δc(F,u) ∼u F , or equivalently u(c(F, u)) =∫
R u(x) dF (x). Given risk aversion (i.e., concave u), c(F, u) ≤

EF .

Absolute risk aversion (Uncertainty 14–6) For a twice differen-
tiable Bernoulli utility function u(·), the Arrow-Pratt coeffi-
cient of absolute risk aversion is A(x) ≡ −u′′(x)/u′(x).

u(·) has decreasing (constant, increasing) absolute risk aver-
sion iff A(x) is decreasing (. . . ) in x. Under DARA, if I will
gamble $10 when poor, I will gamble $10 when rich.

Since R(x) = xA(x), we have IARA =⇒ IRRA.

Certain equivalent rate of return (Uncertainty 16) A propor-
tionate gamble pays tx where t is a non-negative random
variable with cdf F . The certain equivalent rate of return is
cr(F, x, u) ≡ t̂ where u(t̂x) =

∫
u(tx) dF (t).

Relative risk aversion (Uncertainty 16) For a twice differentiable
Bernoulli utility function u(·), the coefficient of relative risk
aversion is R(x) ≡ −xu′′(x)/u′(x) = xA(x).

u(·) has decreasing (constant, increasing) relative risk aver-
sion iff R(x) is decreasing (. . . ) in x. An agent exhibits
DRRA iff certain equivalent rate of return cr(F, x) is increas-
ing in x. Under DRRA, if I will invest 10% of my wealth in
a risky asset when poor, I will invest 10% when rich.

Since R(x) = xA(x), we have DRRA =⇒ DARA.

First-order stochastic dominance (Uncertainty 17–8) cdf G first-
order stochastically dominates cdf F iff G(x) ≤ F (x) for all
x.

Equivalently, for every nondecreasing function u : R → R,∫
u(x) dG(x) ≥

∫
u(x) dF (x).

Equivalently, we can construct G as a compound lottery
starting with F and followed by (weakly) upward shifts.

Second-order stochastic dominance (Uncertainty 18–21) cdf G
second-order stochastically dominates cdf F (where F and
G have the same mean∗) iff for every x,

∫ x
−∞G(y) dy ≤∫ x

−∞ F (y) dy.

Equivalently, for every (nondecreasing?) concave function
u : R→ R,

∫
u(x) dG(x) ≥

∫
u(x) dF (x).

Equivalently, we can construct F as a compound lottery
starting with G and followed by mean-preserving spreads.

Demand for insurance (Uncertainty 21–3) A risk-averse agent
with wealth w faces a probability of p of incurring a loss
L. She can insure against this loss by buying a policy that
will pay out a in the event the loss occurs, at cost qa.

If insurance is actuarially fair (q = p), the agent fully insures
(a∗ = L) for all wealth levels. If p < q, the agent’s insurance
coverage a∗ will decrease (increase) with wealth if the agent
has decreasing (increasing) absolute risk aversion.

Portfolio problem (Uncertainty 23–5) A risk-averse agent with
wealth w must choose to allocate investment between a
“safe” asset that returns r and a risky asset that pays re-
turn z with cdf F .

If risk-neutral, the agent will invest all in the asset with
higher expected return (r or E z). If (strictly) risk-averse,
she will invest at least some in the risky asset as long as
its real expected return is positive. (To see why, consider
marginal utility to investing in the risky asset at investment
a = 0.)

If u is more risk-averse than v, then u will invest less in the
risky asset than v for any initial level of wealth. An agent
with decreasing (constant, increasing) absolute risk aversion
will invest more (same, less) in the risky asset at higher levels
of wealth.

Subjective probabilities (Uncertainty 26–8) We relax the assump-
tion that there are objectively correct probabilities for var-
ious states of the world to be realized. If preferences over
acts (bets) satisfy a set of properties “similar in spirit” to
the vN-M axioms (completeness, transitivity, something like
continuity, the sure thing principle, and two axioms that have
the flavor of substitution), then decision makers’ choices are
consistent with some utility function and some prior proba-
bility distribution (Savage 1954).

Savage requires an exhaustive list of possible states of the
world. No reason to assume different decision makers are us-
ing the same implied probability distribution over states, al-
though we often make a “common prior” assumption, which
implies that “differences in opinion are due to differences in
information.”

2.6 General equilibrium

Walrasian model (G.E. 3–4, 5) An economy E ≡ ((ui, ei)i∈I)
comprises:

1. L commodities (indexed l ∈ L ≡ {1, . . . , L));

2. I agents (indexed i ∈ I ≡ {1, . . . , I)), each with

• Endowment ei ∈ RL+, and

• Utility function ui : RL+ → R.

Given market prices p ∈ RL+, each agent chooses con-
sumption to maximize utility given a budget constraint:
maxx∈RL+

ui(x) such that p · x ≤ p · ei, or equivalently

p ∈ Bi(p) ≡ {x : p · x ≤ p · ei}.
We often assume (some or all of):

1. ∀i, ui(·) is continuous;

2. ∀i, ui(·) is increasing; i.e., ui(x′) > ui(x) whenever
x′ � x;

3. ∀i, ui(·) is concave;

4. ∀i, ei � 0;

Walrasian equilibrium (G.E. 4, 17, 24–9) A WE for economy E is
a vector of prices and allocations (p, (xi)i∈I) such that:

1. Agents maximize their utilities: maxx∈Bi(p) u
i(x) for

all i ∈ I;

2. Markets clear:
∑
i∈I x

i
l =

∑
i∈I e

i
l for all l ∈ L, or

equivalently
∑
i∈I x

i =
∑
i∈I e

i.

Under assumptions 1–4 above, a WE exists (proof using fixed
point theorem). WE are not generally unique, but are locally
unique (and there are an odd number of them). Price ad-
justment process (“tatonnement”) may not converge to an
equilibrium.

Feasible allocation (G.E. 4) An allocation (xi)i∈I ∈ RIL+ is fea-

sible iff
∑
i∈I x

i ≤
∑
i∈I e

i.

Pareto optimality (G.E. 5) A feasible allocation x ≡ (xi)i∈I for
economy E is Pareto optimal iff there is no other feasible al-
location x̂ such that ui(x̂i) ≥ ui(xi) for all i ∈ I with strict
inequality for some i ∈ I.

Edgeworth box (G.E. 6–10) Graphical representation of the two-
good, two-person exchange economy. Bottom left corner is
origin for one consumer; upper right corner is origin for other
consumer (with direction of axes reversed). Budget line has
slope −p1/p2, and passes through endowment e.

1. Locus of Marshallian demands for each consumer as rel-
ative prices shift is her offer curve. WE are intersec-
tions of the two consumers’ offer curves.

2. Set of PO allocations is locus of points of tangency be-
tween the two consumers’ indifference curves, generally
a path from the upper right to lower left of the Edge-
worth box.

3. Portion of Pareto set that lies between the indifference
curves that pass through e is the contract curve: PO
outcomes preferred by both consumers to their endow-
ments.

First Welfare Theorem (G.E. 11) If ∀i, ui(·) is increasing (i.e.,
ui(x′) > ui(x) whenever x′ � x) and (p, (xi)i∈I) is a WE,
then the allocation (xi)i∈I is PO. Note implicit assumptions
such as

1. All agents face same prices;

2. All agents are price takers;

3. Markes exist for all goods, and individuals can freely
participate;

∗If EF > EG, there is always a concave utility function that will prefer F to G.
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4. Prices are somehow arrived at.

Proof by adding results of Walras’ Law across consumer at
potentially Pareto-improving allocation. Result shows that
allocation cannot be feasible.

Second Welfare Theorem (G.E. 11-3) If allocation (ei)i∈I is PO
and

1. ∀i, ui(·) is continuous;

2. ∀i, ui(·) is increasing; i.e., ui(x′) > ui(x) whenever
x′ � x;

3. ∀i, ui(·) is concave;

4. ∀i, ei � 0;

then there exists a price vector p ∈ RL+ such that (p, (ei)i∈I)
is a WE.

Note this does not say that starting from a given endowment,
every PO allocation is a WE. Thus decentralizing a PO al-
location is not simply a matter of identifying the correct
prices—large-scale redistribution may be required as well.

Proof by separating hyperplane theorem. Consider the set
of changes to total endowment that strictly improve every
consumer’s utility; by concavity of ui(·), this set is convex.
Separate this set from 0, and show that the resulting prices
are nonnegative, and that at these prices, ei maximizes each
consumer’s utility.

Excess demand (G.E. 18) zi(p) ≡ xi(p, p ·ei)−ei, where xi is the
agent’s Marshallian demand. Walras’ Law gives p ·zi(p) = 0.

Aggregate excess demand is z(p) ≡
∑
i∈I z

i(p). If z(p) = 0,

then (p, (xi(p, p · ei))i∈I) is a WE.

Sonnenschein-Mantel-Debreu Theorem (G.E. 30) Let B ⊆
RL++ be open and bounded, and f : B → RL be continu-
ous, homogeneous of degree zero, and satisfy p · z(p) = 0 for
all p. Then there exist an economy E with aggregate excess
demand function z(p) satisfying z(p) = f(p) on B.

Interpretation is that without special assumptions, pretty
much any any comparative statics result could be obtained
in a GE model. However, Brown and Matzkin show that if
we can observe endowments as well as prices, GE may be
testable.

Gross substitutes property (G.E. 32–5) A Marshallian demand
function x(p) satisfies the gross substitutes property if for
all k, whenever p′k > pk and p′−k = p−k, then x−k(p′) >

x−k(p); i.e., all pairs of goods are (strict) gross substitutes.
Implies that excess demand function satisfies gross substi-
tutes. If every individual satisfies gross substitutes, then so
does aggregate excess demand.

If aggregate excess demand satisfies gross substitutes,

1. The economy has at most one (price-normalized) WE.

2. If z(p∗) = 0 (i.e., p∗ are WE prices), then for any p not
colinear with p∗, we have p∗ · z(p) > 0.

3. The tatonnement process dp
dy

= αz(p(t)) with α > 0

converges to WE prices for any initial condition p(0).

4. Any change that raises the excess demand for good k
will increase the equilibrium price of good k.

Incomplete markets (Jackson) Under incomplete markets, Wal-
rasian equilibria may:

1. Fail to be efficient, and even fail to be constrained ef-
ficient (i.e., there may be more efficient outcomes that
are feasible under restricted trading regime);

2. Fail to exist (“although only rarely”);

3. Have prices/trades that depend on the resolution of un-
certainty.

Rational expectations equilibrium (Jackson) Suppose l (prim-
itive) goods, state space S (with |S| < ∞), and n agents
each of whom has

• endowment ei : S → Rl+,

• preferences ui : Rl+ × S → R,

• information Ii (including information contained in ei
and ui).

The allocations xi : S → Rl+ (or equivalently xi ∈ R|S|·l+ )

and prices p : S → Rl+ are an REE iff:

1. Information revelation: xi is measurable with respect
to Ii ∨ Iprices for all i;

2. Market clearing:
∑
i xi(s) ≤

∑
i ei(s) for all s ∈ S;

3. Optimizing behavior: xi(s) ∈ argmaxx ui[xi(s)] such
that xi is measurable with respect to Ii ∨ Iprices and
p(s) · xi(s) ≤ p(s) · ei(s) for all i.

2.7 Games

Game tree (Bernheim 2–5) Description of a game comprising:

1. Nodes,

2. A mapping from nodes to the set of players,

3. Branches,

4. A mapping from branches to the set of action labels,

5. Precedence (a partial ordering),

6. A probability distribution over branches for all notes
that map to nature.

We assume:

1. There is a finite number of nodes;

2. There is a unique root—a node that has no predecessors
and is a predecessor for everything else;

3. There is a unique path (following precedence) from the
root to each terminal node (those nodes without suc-
cessors).

We also add:

1. Information: a partition over the set of nodes such that

• The same player makes the decisions at all nodes
within any element of the partition;

• The same actions are available at all nodes within
any element of the partition;

• No element of the partition contains both a node
and its predecessor.

2. Payoffs: a mapping from terminal nodes to a vector of
utilities.

Perfect recall (Bernheim 6) Informally, a player never forgets ei-
ther a decision he made in the past or information that he
possessed when making a previous decision.

Perfect information (Bernheim 7) Every information set is a sin-
gleton.

Complete information (Bernheim 13, 73–4) Each player knows the
payoffs received by every player at every terminal node.

Per Harsanyi, a game of incomplete information can be writ-
ten as a game of imperfect information by adding nature as a
player whose choices determine hidden characteristics. The
probability governing Nature’s decisions is taken to be com-
mon knowledge. NE of this “Bayesian game” is a Bayesian
NE.

Strategy (Bernheim 7–8) A mapping that assigns a feasible action to
all information sets for which a player is the decision-maker
(i.e., a complete contingent plan). Notation is:

1. Si the set of player i’s feasible strategies;

2. S ≡
∏
j Sj the set of feasible strategy profiles;

3. S−i ≡
∏
j 6=i Sj the set of feasible strategy profiles for

every player but i.

Payoff function (Bernheim 8) gi : S → R gives player i’s expected
utility if everyone plays according to s ∈ S.

Normal form (Bernheim 8) A description of a game as a collection
of players {1, . . . , I}, a strategy profile set S, and a payoff
function g : S → RI where g(s) = (g1(s), . . . , gI(s)).

Revelation principle (Bernheim 79) In a game with externali-
ties, when the mechanism designer doesn’t have information
about preferences, agents will have an incentive to under-
state or exaggerate their preferences. The revelation princi-
ple states that in searching for an optimal mechanism within
a much broader class, the designer can restrict attention to
direct revelation mechanisms (those that assume agents have
revealed their true preferences) for which truth-telling is an
optimal strategy for each agent.

34



Proper subgame (Bernheim 91) Consider a node t in an extensive
form game, with information set h(t) and successors S(t).
Then {t}∪S(t) (along with associated mappings from infor-
mation sets to players, from branches to action labels, and
from terminal notes to payoffs) is a proper subgame iff

1. h(t) = {t} (the information set for t is a singleton); and

2. ∀t′ ∈ S(t), we have h(t′) ⊆ S(t) (every player knows we
are at t).

System of beliefs (Bernheim 94) Given decision nodes X, infor-
mation sets H, including the information set h(t) contain-
ing t ∈ X, and φ(h) the player who makes the decision at
information set h ∈ H, a system of beliefs is a mapping
µ : X → [0, 1] such that ∀h ∈ H we have

∑
t∈h µ(t) = 1.

That is, a set of probability distributions over nodes in each
information set.

Strictly mixed strategy (Bernheim 98) Behavior strategy profile
δ is strictly mixed if every action at every information set is
selected with strictly positive probability.

Note since every information set is reached with strictly pos-
itive probability, one can completely infer a system of beliefs
using Bayes’ rule.

2.8 Dominance

Dominant strategy (Bernheim 13) si is a (strictly) dominant
strategy iff for all ŝ ∈ S with ŝi 6= si, we have gi(si, ŝ−i) >
gi(ŝi, ŝ−i).

Dominated strategy (Bernheim 15) si is a (strictly) dominated
strategy iff there exists some probability distribution ρ over
Si ≡ {s1i , . . . , sMi } such that for all s−i ∈ S−i, we have

M∑
m=1

ρmgi(s
m
i , s−i) > gi(ŝi, ŝ−i).

Iterated deletion of dominated strategies (Bernheim 15–6) We
iteratively delete (strictly) dominated strategies from the
game. Relies on common knowledge of rationality (i.e., ev-
eryone is, everyone knows, everyone knows everyone knows,
. . . ). If this yields a unique outcome, the game is “dominance
solvable.” The order of deletion is irrelevant.

For two player games, strategies that survive iterative dele-
tion of dominated strategies are precisely are precisely the
set of rationalizable strategies. This equivalence holds for
games with more than two players only if we do not insist on
independence in defining rationalizability; if we do insist on
independence, the set of rationalizable strategies is smaller.

Weakly dominated strategy (Bernheim 20) ŝi is a weakly domi-
nated strategy iff there exists some probability distribution ρ
over Si ≡ {s1i , . . . , sMi } such that for all s−i ∈ S−i, we have

M∑
m=1

ρmgi(s
m
i , s−i) ≥ gi(ŝi, s−i),

with strict inequality for some s−i ∈ S−i.

We cannot iteratively delete weakly dominated strategies;
unlike for strict domination, the order of deletion matters.

2.9 Equilibrium concepts

PSNE ⊆ rationalizable ⊆ ISD. Rationalizable strategies are
a best response based on some prior. PSNE are best re-
sponses based on a common prior.

Normal form equilibrium concepts (static games): THPE ⊆
MSNE; PSNE ⊆ MSNE; MSNE are made up of rationaliz-
able strategies. BNE are MSNE of “extended game” that
includes nature choosing types.

Extensive form equilibrium concepts (dynamic games)∗:

WPBE SPNE

MSNE

PBE

SE

EFT
HPE

Rationalizable strategy (Bernheim 27)

1. A 1-rationalizable strategy is a best response to some
(independent)† probability distribution over other play-
ers’ strategies.

2. A k-rationalizable strategy is a best response to some
(independent) probability distribution over other play-
ers’ (k − 1)-rationalizable strategies.

3. A rationalizable strategy is k-rationalizable for all k.

For two player games, rationalizable strategies are precisely
those that survive iterative deletion of dominated strategies.
This equivalence holds for games with more than two play-
ers only if we do not insist on independence in defining ra-
tionalizability; if we do insist on independence, the set of
rationalizable strategies is smaller.

Pure strategy Nash equilibrium (Bernheim 29–33) s∗ ∈ S is a
PSNE iff for all s ∈ S, we have gi(s

∗
i , s
∗
−i) ≥ gi(si, s

∗
−i).

The strategies played in a PSNE are all rationalizable.

A finite game of perfect information has a PSNE [Zermelo].
Proved using backwards induction.

If S1, . . . , SI are compact, convex Euclidean sets and gi is
continuous in s and quasiconcave in si, then there exists a
PSNE. By Berge’s Theorem, the best response correspon-
dence is upper hemi-continuous. By quasiconcavity of gi,
the best response correspondence is convex valued. Thus by
Kakutani’s Fixed Point Theorem, it has a fixed point.

Mixed strategy Nash equilibrium (Bernheim 56–9) We define a
new game where the strategy space is the set of probability
distributions over (normal form) strategies in the original
game (i.e., the set of mixed strategies). A MSNE of the
original game is any PSNE of this new game. Players must
be indifferent between playing any strategies included (with
strictly positive probability) in a MSNE.

Another approach is to consider randomization over ac-
tions at each information set (behavior strategies). However,
Kuhn’s Theorem assures us that for any game of perfect
recall there are mixed strategies that yields the same dis-
tribution over outcomes as any combination of behavioral
strategies; also it gives that there are behavioral strategies
that yield the same distribution over outcomes as any com-
bination of mixed strategies.

Every finite game has a MSNE.

Trembling-hand perfection (Bernheim 65–7) There is always
some risk that another player will make a “mistake.” Bern-
heim notes include two equivalent rigorous definitions; origi-
nal definitions are for finite games, but there is an extension
available for infinite games. Key notes:

1. In a THPE, no player selects a weakly dominated strat-
egy with positive probability.

2. For two player games, an MSNE is a THPE iff no player
selects a weakly dominated strategy with positive prob-
ability.

3. For more than two player games, the set of THPE may
be smaller than the set of MSNE where no player selects
a weakly dominated strategy with positive probability;
if we allow correlations between the trembles of different
players, the sets are the same.

Correlated equilibrium (Bernheim 70) In a finite game
({Si}Ii=1, g), a probability distribution δ∗ over S is a CE iff
for all i and si chosen with strictly positive probability, si
solves

max
s′i∈Si

Es−i [gi(s
′
i, s−i)|si, δ∗];

i.e., player i has no incentive to defect from any strategy si,
assuming that other players respond per δ∗.

∗Unclear whether PBE is the intersection of WPBE and SPNE, or a subset of the intersection.
†Question is whether to allow other players’ randomized strategies to be correlated with each other.
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Bayesian Nash equilibrium (Bernheim 73–4) Per Harsanyi, we
write our game of incomplete information as a game of imper-
fect information where nature selects hidden characteristics.
A BNE is a MSNE of this “Bayesian game.” A pure strategy
BNE is a PSNE of the Bayesian game.

Characterized by a set of decision rules that determine each
player’s strategy contingent on his type.

Subgame perfect Nash equilibrium (Bernheim 92) A MSNE in
behavior strategies δ∗ is a SPNE iff for every proper sub-
game, the restriction of δ∗ to the subgame forms a MSNE in
behavior strategies.

For finite games, we can find SPNE using backwards induc-
tion on subgames of extensive form.

A SPNE need not be a WPBE, and a WPBE need not be a
SPNE.

Sequentially rational strategy (Bernheim 94) Behavior strategy
profile δ is sequentially rational given a system of beliefs µ
iff for all information sets h ∈ H, the actions for player φ(h)
at h ∪ [

⋃
t∈h S(t)] are optimal starting from h given an ini-

tial probability over h governed by µ, and given that other
players will adhere to δ−φ(h).

Weak perfect Bayesian equilibrium (Bernheim 93–5) Implausi-
ble equilibria can still be SPNE, because we lack beliefs at
each information set. Behavior strategy profile δ∗ and sys-
tem of beliefs µ∗ are a WPBE iff:

1. δ∗ is sequentially rational given beliefs µ∗, and

2. Where possible, µ∗ is computed from δ∗ using Bayes’
rule; i.e., for any information set h with Pr(h|δ∗) > 0,
for all t ∈ h,

µ∗(t) =
Pr(t|δ∗)
Pr(h|δ∗)

.

Note only restriction on out-of-equilibrium beliefs is that
they exist. A SPNE need not be a WPBE, and a WPBE
need not be a SPNE.

Perfect Bayesian equilibrium (Bernheim 93–5) (δ∗, µ∗) is a PBE
if it a WPBE in all proper subgames. This ensures it is also
a SPNE.

Consistent strategy (Bernheim 98) Behavior strategy profile δ is
consistent given a system of beliefs µ iff there exists a se-
quence of strictly mixed behavior strategy profiles δn → δ
such that µn → µ, where µn is generated from δn by Bayes’
rule.

Sequential equilibrium (Bernheim 98) (δ∗, µ∗) is a SE if it is se-
quentially rational and consistent.

SE places additional restriction on beliefs vs. WPBE, hence
SE ⊆WPBE; also, can show that SE are SPNE, so an SE is
also a PBE.

Extensive form trembling hand perfection (Bernheim 102–5)

“Agent normal form” is the normal form that would obtain
if each player selected a different agent to make her decisions
at every information set, and all of a player’s agents acted
independently with the object of maximizing the player’s
payoffs. An EFTHPE is a THPE in the agent normal form
of the game.

EFTHPE ⊆ SE; for generic finite games, they are the same.

2.10 Basic game-theoretic models

Other models and examples are throughout Bernheim lecture
notes.

Cournot competition (Bernheim 11, 46–50) Firms simultaneously
choose quantity. Inverse demand is P (Q) (monotonically de-
creasing); cost to firm i of producing quantity qi is ci(qi)
where ci(0) = 0. Normal form:

1. Strategies: S = RI+;

2. Payouts: gi(s) = P (
∑
j sj)si − ci(si).

To ensure PSNE existence, we need quasiconcavity of gi in
si (generally don’t worry about unboundedness of strategy
set). Sufficient conditions are ci(·) convex and P (·) concave.
The former rules out increasing returns to scale. The latter
“is not a conventional property of demand functions, but is
satisfied for linear functions.”

Note:

1. Characterized by strategic substitutes; i.e., best re-
sponse curves are downward sloping.

2. Production is spread among firms.

Bertrand competition (Bernheim 11, 37) Firms simultaneously
choose price; consumers purchase from low-price firm. De-
mand is Q(p) (monotonically decreasing); cost to firm i of
producing quantity qi is ci(qi) where ci(0) = 0. Normal form
(two-firm case):

1. Strategies: S = RI+;

2. Payouts:

gi(s) =


0, si > s−i;

siQ(si)− ci(Q(si)), si < s−i;
1
2

[
siQ(si)− ci(Q(si))

]
, si = s−i.

Note:

1. One firm case is monopoly (in which case demand mat-
ters); more than one yields perfectly competitive out-
come since only the marginal cost of the second-most
efficient firm matters—the properties of the demand
curve are then irrelevant.

2. Characterized by strategic complements; i.e., best re-
sponse curves are upward sloping.

3. All production is done by most efficient firm.

Bertrand competition—non-spatial differentiation
(Bernheim 38–40) Firm i chooses price for good i. Demand
for good i is given by Q(pi, p−1). Strategic complements;
i.e., best response curves are upward sloping.

Bertrand competition—horizontal differentiation
(Bernheim 40–2) a.k.a. Hotelling spatial location model. Con-
sumers are indexed by θ ∈ [0, 1], representing location. Each
consumer purchases zero or one unit, with payoff 0 if no
purchase, and v − pi − t(xi − θ)2 from purchasing a type xi
good at price pi. v is value of good, t is unit transport cost.

If firms cannot choose product type xi, prices are strategic
complements; i.e., best response curves are upward sloping.

Bertrand competition—vertical differentiation (Bernheim

42–5) Consumers are indexed by θ ∈ [0, 1], representing value
attached to quantity. Each consumer purchases zero or
one unit, with payoff 0 if no purchase, and θvi − pi from
purchasing a quality xi good at price pi.

Sequential competition (Bernheim 107–12) First one firm selects
price/quantity, then the other firm follows. The leader al-
ways does (weakly) better than in the simultaneous choice
model; whether the follower does better or worse than in si-
multaneous choice depends whether there are strategic com-
plements or substitutes. This also determines which firm
does better in the sequential choice model.

Herfindahl-Hirshman index (Bernheim 37) H ≡ 10000×
∑
i α

2
i ,

where αi is the market share of firm i. When all N firms
evenly split market, H = 10000/N .

Lerner index (Bernheim 37) L ≡
∑
i αiLi, where Li ≡

pi−c′i(qi)
pi

is firm i’s margin and αi is the market share of firm i.

Monopolistic competition (Bernheim 135–8)

1. Products are distinct, and each firm faces a downward-
sloping demand curve;

2. The decisions of any given firm have negligible effects on
any other firm (note this does not hold for the Hotelling
model, where firms have a measurable effect on their
neighbors);

3. There is free entry, with zero profits.

Can formalize as a vector of N differentiated commodities
(for N large) and a numeraire good y, where representative
consumer has utility

u(x, y) = y + g
( N∑
i=1

f(xi)
)
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and the curvature of f(·) gives the extent of substitutability
of the goods.

Relationship between equilibrium variety and optimal vari-
ety is dictated by:

1. When a product is added, revenues generated fall short
of incremental consumer surplus because firms can’t
perfectly price discriminate; this biases towards too lit-
tle entry.

2. Firms don’t take into account the effect of introducing
a product on the profits of others; if goods are substi-
tutes, this biases towards too much entry.

If goods are complements, these biases reinforce and we have
too little variety relative to social optimum.

Entry deterrence (Bernheim ) An incumbent can take some ac-
tion with long-term commitment prior to the arrival of an
entrant that makes entry less attractive. For example:

1. Selecting to produce a middle-of-the-road product
(Hotelling model); note the deterrent action is the same
as what the firm would do if it faced no entry with cer-
tainty (entry is “blockaded.”)

2. Producing a proliferating range of products (e.g., RTE
cereal).

3. Preemptive investment in production capacity; shifts a
portion of marginal cost to a sunk cost. Note entrant
may also limit capacity to reduce threat to incumbent.

Vickrey auction (Bernheim 22–3, 82–3) a.k.a. second-price auction.
I bidders simultaneously submit sealed bids for an item that
each values at vi. Winning bidder pays second highest bid.
Bidding pi = vi weakly dominates any other pure strategy,
and is not weakly dominated by any other strategy. Analysis
does not depend on complete vs. incomplete information—
everyone bidding their valuation is a BNE.

First-price sealed bid auction (Bernheim 83–7) I bidders simul-
taneously submit sealed bids for an item that each values at
vi. Winning bidder pays his own bid. Symmetric BNE gives
a decision rule where each bids below his valuation.

Realized revenues typically differ from Vickrey (second-price
sealed bid) auction, but expected revenue is the same given
independent private valuations (per the revenue equivalence
theorem).

English auction (Bernheim 87) a.k.a. ascending price auction
Posted price of good is slowly increased until only one bid-
der remains. Staying in until posted price exceeds valuation
is a weakly dominated strategy; outcomes are equivalent to
Vickrey (second-price sealed bid) auction.

Dutch auction (Bernheim 87) a.k.a. descending price auction
Posted price of good is slowly decreased until a bidder buys.
Outcomes are equivalent to first-price sealed bid auction.

Public good (Bernheim 51–4) A non-rival and non-excludable good.

Spence signaling model (Bernheim 218–35) Workers choose edu-
cation level; education does nothing for worker’s productiv-
ity, but is less costly on margin for more productive workers.
All workers have same outside opportunities. Three types of
WPBE:

1. Separating equilibria: different types choose different
education levels.

2. Pooling equilibria: different types choose same educa-
tion levels. (Note pooling equilibria with strictly posi-
tive levels of education are highly inefficient—education
adds nothing to productivity nor does it differentiate
workers.)

3. Hyprids: some members of differently-typed groups
pool, others separate.

Equilibrium satisfies equilibrium dominance condition a.k.a.
the “intuitive criterion” iff whenever an individual gets some
level of education that no one should in equilbrium, no
low-productivity worker should ever choose, and some high-
productivity worker could conceivably choose, the firm as-
sumes he is a high-productivity worker with certainty.

2.11 Repeated games with complete infor-
mation

Infinitely repeated game (Bernheim 164–5) A supergame formed
by (potentially) infinite repetitions of some stage game (i.e.,
the game played in each period). Note there need not ac-
tually be infinite repetitions, but there must be a nonzero
possibility in each stage that the game will continue.

Given absence of terminal nodes, need mapping from strate-
gies to expected payoffs, e.g.,

1. Discounted payoffs: ui(vi) =
∑∞
t=0 δ

tvi(t), where the
discount factor may reflect both time preference and the
probability of continuation.

2. Average payoffs: ui(vi) = limT→∞
1
T

∑T
t=1 vi(t).

3. Overtaking criterion: a strategy is preferred iff there is
some T beyond which all partial sums of stage game
payoffs exceed the corresponding partial sum for other
strategies; n.b., only a partial ordering.

Feasible payoff (Bernheim 169–70) The convex hull of payoff vectors
from pure strategy profiles in the stage game. Note this is
potentially larger than the set of payoffs achievable through
mixed strategies, since we allow for correlations.

Individually rational payoff (Bernheim 170–1) (Stage game) pay-
off vectors where each player receives at least his minmax
payoff

πmi ≡ min
δ−i

max
δi

πi(δ).

Folk Theorem (Bernheim 171–2, 5, 7–8) Consider a supergame
formed by repeating a finite stage game an infinite number
of times; suppose players use the average payoff criterion.
Then the set of feasible and individually rational payoffs is
precisely the set of average payoffs for Nash equilibria (which
need not be SPNE).

1. “Anything can happen;” this makes comparative statics
are problematic.

2. Inability to write binding contracts is not very dam-
aging; anything attainable through a contract can also
be obtained through some self-enforcing agreement (if
there is no discounting).

For discounted payoffs, all feasible payoffs that strictly ex-
ceed minmax payoffs for every player are the average payoff
for some NE and all discount rates sufficiently close to 1.

Subject to some technical conditions, versions of the folk
theorem (with and without discounting) hold for SPNE.

Nash reversion (Bernheim 176–7) a.k.a. “grim trigger” strategy.
Players attempt to support cooperation, reverting to a static
(stage-game) equilibrium as punishment if someone deviates.
If a Nash reversion strategy is a NE, then it is a SPNE.

Finitely repeated game (Bernheim 179–80) If there is a unique (up
to payoffs) NE for the stage game, there is a unique SPNE
for the repeated game, consisting of the repeated stage game
equilibrium. However, cooperation may be possible when the
stage game has multiple NE.

Stick-and-carrot equilibrium (Bernheim 185–6) If a firm strays
from the (cooperative) equilibrium path, all firms including
itself punish it for one period. If any firm does not partici-
pate in the punishment (including the punished firm itself),
it gets punished again in the next period. The punishment
is the “stick;” the fact that punishment will end as soon as
the firm punishes itself is the “carrot.”

2.12 Collusion and cooperation

Core (Jackson; MWG 653–4) The core is the set of allocations not
blocked by any coalition. A coalition will block an alloca-
tion if there is some allocation feasible for the coalition such
that each member is strictly better off (“strong blocking”),
or that every member is weakly better off and some member
is strictly better off (“weak blocking”).

Core allocations must be Pareto optimal.

The set of Walrasian equilibria is a subset of the core (ba-
sically, the FWT) since there are no externalities. In other
settings, the core could be empty due to externalities.

Core convergence (Jackson; MWG 655–7) As we increase the num-
ber of “replicas” of a pure exchange economy, the core of the
replicated economy converges to (equal treatment replicas
of) the W.E. of the original economy.
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Nontransferable utility game (Jackson) Feasible allocations for
a coalition T must be listed explicitly.

Transferable utility game (Jackson; MWG 676) Feasible alloca-

tions for a coalition S are V (S) ≡ R|S|+ . Generally assume:

1. The normalization V (∅) = 0;

2. V (I) ≥ V (S) + V (I \ S) for all I ⊆ S, where I is the
set of all players;

3. Superadditivity (a stronger version of the prior assump-
tion): V (S ∪ T ) ≥ V (S) + V (T ) when S ∩ T = ∅.

In a TU game, an allocation can be strictly blocked iff it can
be weakly blocked; the weak and strong cores are therefore
identically

{x ∈ R|I| :
∑
i

xi = V (I) and ∀S ⊆ I,
∑
i

xi ≥ V (S)}.

Shapley value (Jackson; MWG 673, 679–81) Given a characteristic
function V : 2I → R+, the Shapley value is value function:

φSV
i (V ) ≡

∑
S⊆I s.t. i 6∈S

|S|! (|I| − |S| − 1)!

|I|!
[
V (S∪{i})−V (S)

]
.

That is, the average marginal value that i contributes over
all possible orderings in which members could be added to
a coalition. It is a normative allocation, and can be seen
as a positive description under certain kinds of bargaining
regimes.

The Shapley value is the unique value function satisfying:

1. Symmetry: If we relabel agents, the Shapley values are
relabeled accordingly.

2. Carrier: T ⊆ I is a carrier iff V (S ∩ T ) = V (S) for all
S ⊆ I; if T is a carrier, then

∑
i∈T φi(V ) = V (I) =

V (T ).

3. Dummy: i is a dummy iff V (S ∪ {i}) = V (S) for all
S ⊆ I; if i is a dummy, φi(V ) = 0. Note Carrier =⇒
Dummy.

4. Additivity: φ(V + W ) = φ(V ) + φ(W ); implies that
φ(λV ) = λφ(V ). Convenient, but not mathematically
clear why this should hold.

Simple game (Jackson) A TU game where

1. V (S) ∈ {0, 1},

2. S ⊆ T =⇒ V (S) ≤ V (T ),

3. V (S) = 1 =⇒ V (I \ S) = 0,

4. V (I) = 1.

In a simple game, i is a “veto player” iff V (S) = 1 =⇒ i ∈ S.
The core is nonempty iff there is at least one veto player.
Shapley values are then:

φSV
i =

{
1

# of veto players
, i is a veto player;

0, otherwise.

If the set of veto players is a carrier, φSV ∈ core.

Convex game (Jackson; MWG 683) A TU game V (·) is convex iff
S ⊆ T and i 6∈ T implies

V (S ∪ {i})− V (S) ≤ V (T ∪ {i})− V (T );

i.e., there are increasing marginal returns as coalitions grow.

For a convex game, the core is nonempty; the Shapley value
is in the core.

One-sided matching (Jackson) Players are each allocated one ob-
ject; each player has ordinal preferences over objects. Given
strict preferences, we can find the unique (weak) core alloca-
tion using the Top Trading Cycles algorithm:

1. Look for cycles among individuals’ top choices;

2. Assign each member of cycles her top choice;

3. Return to step 1, with already assigned individu-
als/objects removed from consideration.

We can support this core as a competitive equilibrium by as-
signing a common price to the objects in each cycle as they
are assigned. The price for cycles assigned in the same round
can vary across cycles, but must be strictly lower than the
prices for objects assigned in previous rounds.

The algorithm is strategy-proof: truth telling dominates.

Two-sided matching (Jackson) Two sets M and W , which may
have different cardinalities. Every individual is either
matched to someone in the other set, or remains unmatched.

Can find two core allocations (here strict = weak) using Gale-
Shapley [a.k.a. Deferred acceptance] algorithm: Suppose M
“propose,” then

1. Each M proposes to his favorite W to whom he has not
yet proposed (unless he would prefer to stay single);

2. Each W who has been proposed to accepts her favorite
proposal (unless she would prefer to stay single)—this
could involve breaking an engagement she made in a
previous round;

3. Return to step 1, where the only unengaged M pro-
pose (i.e., those who either had a proposal rejected last
round, or had an engagement broken).

The core is a lattice; Gale-Shapley algorithm yields “best”
for proposing group (and “worst” for other group). Thus
if we get same result from M -proposing and W -proposing
algorithms, core is a singleton. Note this result relies on:

• Two-sided matching (cf, roommate matching);

• One-to-one matching (cf, firm and workers);

• Strict preferences.

The algorithm is not strategy-proof: there may be profitable
manipulations (lying by rejecting proposals), but they are
typically difficult to implement.

2.13 Principal-agent problems

Moral hazard (Jackson) “Hidden action” problems. Agent takes
(non-contractable) action e, outcome π has some distribu-
tion that varies based on e. Generally assume risk-neutral
principal and risk-averse (and/or liability-limited) agent, so
that optimal solution is not merely “selling the firm to the
agent.”

Principal structures optimal contract—payment w(π) as a
function of realized outcome—that, for a desired effort level
e∗,

1. Maximizes principal’s expected payoff: E[π − w(π)|e∗];

2. Satisfies the agent’s participation constraint (i.e., indi-
vidual rationality constraint): E[u(w(π))|e∗]− g(e∗) ≥
ū, where g(·) is the agent’s cost of effort, and ū is his
reservation utility;

3. Satisfies the agent’s incentive compatibility constraint:
e∗ ∈ argmaxe E[u(w(π))|e]− g(e).

Adverse selection (Jackson) “Hidden information” problems.
Can be mitigated using, e.g., warantees, repeated interac-
tion, reputation mechanisms, signaling/screening.

Signaling (Jackson) Agents choose a costly signal (which per
Spence is often assumed to be meaningless other than for
its informational value), and then principals Bertrand bid
for contracts with agents.

A multitude of pure strategy sequential equilibria typically
exist—both pooling (various types choose same signal) and
separating (various types choose different signals).

Screening (Jackson) Bertrand principals announce a schedule of
contracts they are willing to engage in (pairs of signals and
wages), and then agents choose a contract (and hence a sig-
nal).

No pooling equilibria can exist, and there is only one sep-
arating equilibrium that can exist (but may not). Thus in
contrast with signaling, where our problem was a multitude
of PSNE, screening games may have no PSNE.
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2.14 Social choice theory

Voting rule (Jackson) n individuals must choose among a set A of
alternatives. Each individual has a complete, transitive pref-
erence relation �i over A that does not have indifference.

A voting rule R(�) ≡ R(�1, . . . ,�n) gives a social welfare
ordering over A (which in general allows indifference). The
corresponding strict social welfare ranking is P (�).

Neutrality (Jackson) For A = {a, b} (i.e., |A| = 2), consider � and
�′ with �i 6=�′i. Then R(·) is neutral (over alternatives) iff
aR(�)b ⇐⇒ bR(�′)a.

Anonymity (Jackson) Let π(·) be a permutation over {1, . . . , n}.
Define �′i≡�π(i). Then R(·) is anonymous (over individuals)
iff aR(�)b ⇐⇒ aR(�′)b.

Monotonicity (Jackson) Consider � and �′ with �j=�′j for all

j 6= i, and �i= a while �′i= b. Then R(·) satisfies mono-
tonicity iff bR(�)a =⇒ bR(�′)a.

R(·) satisfies strict monotonicity iff bR(�)a =⇒ bP (�′)a.

May’s Theorem (Jackson) Let A = {a, b} (i.e., |A| = 2). Then
R(·) is complete, transitive (which has no bite for |A| = 2),
neutral, anonymous, and satisfies strict monotonicity iff it is
majority rule.

If we replace strict monotonicity with monotonicity, we get
that R(·) must be a quota rule.

Unanimity (Jackson) R(·) is unanimous iff a �i b∀i implies that
aP (�)b.

Arrow’s independence of irrelevant alternatives (Jackson)

Consider � and �′ with a �i b ⇐⇒ a �′i b for all i.

R(·) satisfies AIIA iff aR(�)b ⇐⇒ aR(�′)b; i.e., R(�)
over {a, b} only depends on � over {a, b}, not over any other
(“irrelevant”) alternatives.

Arrow’s Theorem (Jackson; Micro P.S. 4) Let |A| ≥ 3. Then R(·)
is complete, transitive, unanimous, and satisfies AIIA iff
it is dictatorial (i.e., if there is some i such that ∀ �,
aP (�)b ⇐⇒ a �i b).

The theorem is tight; i.e., giving up any of completeness,
transitivity, unanimity, or AIIA allows a non-dictatorial R(·).

Condorcet winner (Jackson) a ∈ A is a Condorcet winner iff it is
majority preferred to every other alternative.

Condorcet-consistent rule (Jackson) A voting rule that picks
the Condorcet winner if there is one.

Gibbard-Satterthwaite Theorem (Jackson) Let 3 ≤ |A| < ∞,
and F (·) be a social choice function (note we do not require a
full ordering). Then F (·) has range A (implied by unanimity)
and is strategy-proof (i.e., DSIC) iff it is dictatorial.

Vickrey-Clarke-Groves mechanism (Jackson) Let θi ∈ Θi be
the type of individual i, and θ̂i be his announced type. Sup-
pose d(θ) makes ex post efficient decisions. Then a mecha-
nism with transfers

ti(θ̂) =
∑
j 6=i

[
uj(d(θ̂), θ̂j)

]
+ xi(θ̂−i)

for any xi(·) is dominant-strategy incentive compatible
(DSIC).

Conversely, if (d, t) is DSIC, d(·) is ex post efficient, and Θi
is sufficiently rich such that ∀vi ∈ {vi : D → R} there exists
θi such that vi(·) = ui(·, θi), then t(·) must satisfy the above
condition.

Note that Gibbard-Satterthwaite says that a general DSIC
mechanism must be dictatorial. However, here we have re-
stricted ourselves to quasilinear preferences, and get a DSIC
mechanism without being dictatorial. However, although it
reaches an efficient decision it is not always balanced (pay-
ments do not total to zero), and hence is not typically overall
efficient.

Pivotal mechanism (Jackson) An example of a VCG mechanism
where

ti(θ̂) =
∑
j 6=i

[
uj(d(θ̂), θ̂j)

]
−max

d

∑
j 6=i

uj(d, θ̂j).

That is, the transfers are the externality imposed on others
by choosing d(θ̂) instead of d(θ̂−i).

Ensures feasibility, since transfers are always negative. How-
ever, budget generally doesn’t balance—there is a need to
“burn money.”

3 Macroeconomics

3.1 Models

Two period intertemporal choice model (Nir 1-11) Maximize
U(C0, C1) subject to C0 + S0 ≤ Y0 and C1 ≤ RS0. The
constraints can be rewritten C0 + 1

R
C1 ≤ Y0.

Neoclassical growth model (discrete time) (Nir 3-3–5, 11-3,

8, 10, 16–28, 12-12–26) (a.k.a. Ramsey model) Maximize∑
t β

tU(ct) subject to:

1. ct + kt+1 ≤ F (kt, nt) + (1− δ)kt for all t (RHS can be
denoted f(kt, n), or f(kt), since the lack of disutility of
working ensures that nt = 1);

2. kt+1 ≥ 0 for all t;

3. ct ≥ 0 for all t;

4. k0 is given.

We further assume U(·) satisfies Inada conditions; that the
production function is constant returns to scale and satis-
fies F ′k > 0, F ′′kk < 0, F ′n > 0, and F ′′nn < 0; and TVC
limt→∞ βtU ′(ct)f ′(kt)kt = 0.

The problem can be rewritten in “SL canonical form”
as maximizing

∑
t β

tU(f(kt) − kt+1) subject to kt+1 ∈
[0, f(kt)], the given k0, and conditions on f(·) and U(·)
as above. In functional equation form, we write V (k) ≡
maxk′∈[0,f(k)] U(f(k)− k′) +βV (k′) (again, with additional
conditions as above).

Steady state satisfies βf ′(k∗) = 1. Note the utility func-
tion does not affect the steady state (although it will affect
dynamics).

Linearization of the intereuler

u′(f(kt)− kt+1)− βf ′(kt+1)u′(f(kt+1)− kt+2) = 0

about steady state gives:[
kt+2 − k∗
kt+1 − k∗

]
≈
[

1 + 1
β

+ β
U′(c∗)
U′′(c∗)

f ′′(k∗) − 1
β

1 0

][
kt+1 − k∗
kt − k∗

]

The optimal policy function g(k) satisfies:

1. g(·) is single-valued, since the value function is strictly
concave.

2. g(0) = 0 since that is the only feasible choice.

3. g(k) is in the interior of γ(k), since otherwise exactly
one of U ′(c) and U ′(c′) would be infinite, violating the
Intereuler condition.

4. g′(k) > 0, since as k increases, marginal cost of saving
goes down, while marginal benefit stays same.

5. There is unique k∗ > 0 such that g(k∗) = k∗.

6. k > k∗ =⇒ k > g(k) > k∗, and k < k∗ =⇒ k <
g(k) < k∗; i.e., capital moves closer to (without crossing
over) the steady-state level.

7. The sequence k0, g(k0), g(g(k0)), . . . displays mono-
tonic and global convergence.

Endowment economy, Arrow-Debreu (Nir 13-4–6) At every
period household gets yt units of good; there is no storage,
and trading in all commodities (goods delivered in each pe-
riod) takes place in period 0. Maximize

∑
βtU(ct) subject

to
∑
ptct ≤

∑
ptyt (budget constraint), and ensure yt = ct

(market clearing).

Endowment economy, sequential markets (Nir 13-7–9) At ev-
ery period household gets yt units of good; there is no stor-
age, and trading in “assets” (loans across periods) takes place
each period. Maximize

∑
βtU(ct) subject to ct + at+1 ≤

yt +Rtat (budget constraint), and ensure yt = ct, at+1 = 0
(market clearing).
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Production economy, Arrow-Debreu (Nir 13-10–6) Household
owns capital rented for production by competitive firms,
which also rent labor from households. Capital depreciates at
rate δ. There is no storage, and trading in all commodities
(goods delivered, capital rental, and labor in each period)
takes place in period 0.

1. Households maximize
∑
βtU(ct) subject to

∑
pt[ct +

kt+1] ≤
∑
pt[rtkt + (1− δ)kt + ntwt].

2. Firms maximize (in each period) ptF (kt, nt)− ptrtkt−
ptwtnt.

3. Markets clear: ct + kt+1 = F (kt, nt) + (1− δ)kt.

Note the rental rate of capital (rt) and wage rate (wt) are
measured in units of consumption good.

Production economy, sequential markets (Nir 13-25) As
above, household owns capital rented for production by
competitive firms, which also rent labor from households.
Capital depreciates at rate δ. There is no storage, and each
period, goods delivered, capital rental, and labor are traded.
Note there is no inter-period trading, so we do not need a
price for goods.

1. Households maximize
∑
βtU(ct) subject to ct+kt+1 ≤

rtkt + (1− δ)kt + ntwt.

2. Firms maximize (in each period) F (kt, nt)−rtkt−wtnt.
3. Markets clear: ct + kt+1 = F (kt, nt) + (1− δ)kt.

Formulated recursively (assuming n = 1),

1. Households have V (k,K) = maxc,k′ [U(c) + βV (k′,K′)
subject to c+ k′ = R(K)k +W (K); where K is aggre-
gate capital, and R(K) and W (K) are the rental and
wage rates as functions of aggregate capital. We further
require the “forecast” of future capital to be rational:
K′ = G(K), where G(·) is the optimal aggregate policy
function.

2. Firms maximize F (K) − RK − W , which gives FOC
R(K) = Fk(K) + 1− δ and W (K) = Fn(K).

3. Markets clear: C +K′ = F (K) + (1− δ)K.

4. Consistency: G(K) = g(K,K).

Overlapping generations (Nir 17-15–6, 17-32) In an endowment
OLG economy, a competitive equilibrium is Pareto optimal
iff
∑∞
t=0 1/pt =∞ where the interest rate is Rt = pt/pt+1.

In an an OLG economy with production, a competitive equi-
librium is dynamic efficient iff F ′K(K∗) + 1− δ ≥ 1.

Real Business Cycles model (Nir 18-7–14) Benchmark RBC
model is NCGM with endogenous hours, ownership of firms
and capital by households, and stochastic productivity At
multiplying labor (so production function is F (kt, Atnt)).
We specified:

1. CRRA utility: U(c, n) = c1−σ−1
1−σ − n1+χ

1+χ
;

2. Cobb-Douglas production: yt = Atkαt n
1−α
t ;

3. Productivity given by logAt = ρ logAt−1 + εt with εt
distributed iid normal.

Optimal taxation—primal approach (Nir 10) Solve HH prob-
lem and combine FOC and budget constraint with govern-
ment budget constraint to get one expression that ties to-
gether allocations but has no prices or taxes. Then gover-
ment maximizes HH utility over allocations subject to this
constraint.

Note that in the case with capital,∗ the problem is not sta-
tionary; i.e., we cannot use our typical dynamic program-
ming tools, and need to worry about the government’s ability
to commit to a future tax policy.

3.2 Imperfect competition

Imperfect competition model (Nir 21) Consider two stages of
production: final good manufacturer operates competitively,
purchasing inputs from intermediate good producers, who
are small enough to take general price levels and aggregate
demand as given, but whose products are imperfect substi-
tutes to the production process.

Imperfect competition: final goods (Nir 21) Final good pro-
ducer has Dixit-Stiglitz production technology:

Y =

[∫ 1

0
Qρj dj

]1/ρ

which is constant elasticity of substitution ( 1
1−ρ between all

pairs of inputs) and constant returns to scale. ρ ∈ (0, 1),
with ρ→ 1 corresponding to a competitive market where all
inputs are perfect substitutes.

Conditional factor demands are therefore

Qj(Y ) =
[pj
λ

] 1
ρ−1

Y =
[pj
P

] 1
ρ−1

Y,

where the Lagrange multiplier on [
∫ 1
0 Q

ρ
j dj]

1/ρ ≥ Y also sat-

isfies λ = E∗/Y ≡ P , the (aggregate) average cost. Solving
for this gives

λ = P =

[∫ 1

0
p

ρ
ρ−1

j

] ρ−1
ρ

.

The own-price elasticity of demand is η ≡ 1
ρ−1

, ignoring the

effects through P .

Imperfect competition: intermediate goods (Nir 21) Inter-
mediate goods producers have identical production technolo-
gies (affected by same shocks): Qj = zkαj n

1−α
j − φ, where

φ > 0 is overhead cost (since there aren’t really economic
profits). Has constant marginal cost, and therefore increas-
ing returns to scale (because of φ).

Monopolistic problem is to maximize over prices pQ(p) −
c(Q(p)); first-order condition gives markup ≡ p/MC =
η

1+η
= 1

ρ
.

3.3 General concepts

Cobb-Douglas production function (Macro P.S. 1) F (K,N) =
zKαN1−α. Constant returns to scale. Fraction α of output
goes to capital, and 1− α to labor.

Constant relative risk aversion utility function (Nir 14-15,

18-72–4) U(c) = (c1−σ − 1)/(1 − σ), with σ > 0 (reduced to
log utility with σ = 1;† empirically we expect σ ∈ [1, 5]).
Relative risk aversion is σ. Higher risk aversion also cor-
responds to a higher desire to smooth consumption over
time.

Additively separability with stationary discounting (Nir 1-

24) General assumption that U(C0, C1) = u(C0) + βu(C1)
with β ∈ (0, 1).

Intertemporal Euler equation (Nir 1-28, 11-5) u′(ct) =
βRu′(ct+1), where R is the return on not-consuming (e.g.,
f ′(kt+1) ≡ F ′k(kt+1, nt+1) + (1− δ)). This first-order differ-
ence equation is given by FOCs of the maximization problem
for two consecutive time periods.

Intertemporal elasticity of substitution (Nir 1-31, Max notes)

−d log C0
C1
/d logR = −d log C0

C1
/d log

U′(C0)
U′(C1)

.

For CRRA utility function U(c) = c1−σ/(1 − σ), intereuler
is C−σ0 = βC−σ1 R so IEoS = 1

σ
= RRA−1.

General equilibrium (Nir 2-11) A competitive equilibrium is a set
of allocations and prices such that

1. Actors (i.e., households, firms, . . . ) maximize their ob-
jectives;

2. Markets clear; and

3. Resource constraints are satisfied.

Inada conditions (Nir 3-5) We generally assume utility satisfies
Inada conditions, which imply that the nonnegativity con-
straint on consumption will not bind:

1. U(0) = 0;

2. U is continuously differentiable;

∗We generally need to impose restrictions on first-period taxation, since otherwise the government will tax capital very highly then (since it’s supplied perfectly inelastically).
†Note the Taylor approximation of c1−σ − 1 about σ = 1 is c1−σ − 1 ≈ (c0 − 1)− c0(log c)(σ − 1) = (1− σ) log c. Thus as σ → 1, we have U(c) = (c1−σ − 1)/(1− σ) ≈ log c.
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3. U ′(x) > 0 (U is strictly increasing);

4. U ′′(x) ≤ 0 (U is strictly concave);

5. limx→0+ U ′(x) =∞;

6. limx→∞ U ′(x) = 0.

Transversality condition (Macro P.S. 2) In NCGM,
limt→∞ βtU ′(ct)f ′(kt)kt = 0.

No Ponzi condition (Max notes) Credit constraint on agents,
which should never bind but suffice to prevent the optimality
of a “doubling” strategy. For example, ∀t, at ≥ −k̄ for some
k̄.

Dynamic systems (Nir 12-4–11, Macro P.S. 5-4) Let the sequence
{xt} evolve according to xt+1 = Wxt. Using eigen de-
composition W = PΛP−1, giving the “decoupled system”
P−1xt+1 = ΛP−1xt. Then if x̃t ≡ P−1xt, we have
x̃ti = λtix̃0i and hence xt = PΛtX̃0.

For 2× 2 case, if

1. |λ1| > 1 and |λ2| > 1, then the system “explodes” un-
less x̃0,1 = x̃0,2 = 0 (source).

2. |λ1| < 1 and |λ2| < 1, then the system converges for
any x̃0,1 and x̃0,2 (sink).

3. |λ1| < 1 and |λ2| > 1, then the system converges for
any x̃0,1 as long as x̃0,2 = 0 (saddle path).

The speed of convergence for a state variable equals one mi-
nus the slope of the optimal policy function (1− g′(k)).

First Welfare Theorem (Nir 13-27) The competitive equilibrium
is Pareto optimal. Then if we know our solution to the social
planner problem is the unique Pareto optimal solution, we
know it must equal the competitive equilibrium.

Ramsey equilibrium (Nir 20-3, final solutions) A Ramsey equilib-
rium is allocations, prices, and taxes such that:

1. Households maximize utility subject to their budget
constraints, taking prices and taxes as given, and

2. Government maximizes households’ utility while financ-
ing government expenditures (i.e., meeting its budget
constraint).

3.4 Dynamic programming mathematics

Metric space (Nir 6-3–4) A set S and a distance function ρ : S ×
S → R such that:

1. ∀x, y ∈ S, ρ(x, y) ≥ 0;

2. ∀x, y ∈ S, ρ(x, y) = 0 ⇐⇒ x = y;

3. ∀x, y ∈ S, ρ(x, y) = ρ(y, x);

4. Triangle inequality: ∀x, y, z ∈ S, ρ(x, z) ≤ ρ(x, y) +
ρ(y, z).

Normed vector space (Nir 6-5–6) A vector space S and a norm
‖·‖ : S → R such that:

1. ∀x ∈ S, ‖x‖ ≥ 0;

2. ∀x ∈ S, ‖x‖ = 0 ⇐⇒ x = 0;

3. Triangle inequality: ∀x, y ∈ S, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

4. Scalar multiplication: ∀x ∈ S, ∀α ∈ R, ‖αx‖ = |α| ‖x‖.

Note any normed vector space induces a metric space with
ρ(x, y) ≡ ‖x− y‖.

Supremum norm (Rn) (Nir 6-7–8) ‖·‖s : Rn → R with ‖x‖s ≡
supi=1,...,n |xi|.

Euclidean norm (Nir 6-9) ‖·‖E : Rn → R with

‖x‖E ≡ n

√√√√ n∑
i=1

|xi|n.

Continuous function (Nir 6-10; Micro math 3) f : S → R is contin-
uous at x iff ∀y ∈ S and ∀ε > 0, there exists δ > 0 such that
‖y − x‖ < δ =⇒ |f(y)− f(x)| < ε.

Equivalently, iff for all sequences xn converging to x, the
sequence f(xn) converges to f(x).

Supremum norm (real-valued functions) (Nir 6-7–8) Let
C(X) denote the set of bounded, continuous functions from
X to R. Then ‖·‖s : C(X)→ R with ‖f‖s ≡ supx∈X |f(x)|.

Convergent sequence (Nir 7-4) The sequence {xi}∞i=0 in S con-
verges to x ∈ S (or equivalently, the sequence has limit x) iff
∀ε > 0, there exists n such that i > n =⇒ ‖xi − x‖ < ε. In
other words, there is a point in the sequence beyond which
all elements are arbitrarily close to the limit.

Cauchy sequence (Nir 7-9) The sequence {xi}∞i=0 in S is Cauchy
iff ∀ε > 0, there exists n such that i > n and j > n together
imply that ‖xi− xj‖ < ε. In other words, there is a point in
the sequence beyond which all elements are arbitrarily close
to each other. Every convergent sequence is Cauchy (shown
via triangle inequality), but not every Cauchy sequence is
convergent.

Complete metric space (Nir 7-10–16) A metric space (S, ρ) is
complete iff every Cauchy sequence in S converges to some
point in S. Importantly, if C(X) is the set of bounded, con-
tinuous functions from X to R, and ‖·‖s : C(X) → R is the
sup norm, then (C(X), ‖·‖s is a complete metric space.

Contraction (Nir 8-3–4) If (S, ρ) is a metric space, the operator
T : S → S is a contraction of modulus β ∈ (0, 1) iff ∀x,
y ∈ S, we have ρ(Tx, Ty) ≤ βρ(x, y). That is, T brings any
two elements closer together. Every contraction is a contin-
uous mapping.

Contraction Mapping Theorem (Nir 8-5) [a.k.a. Banach fixed
point theorem.] If T is a contraction on a complete metric
space, then

1. T has exactly one fixed point V ∗ such that TV ∗ = V ∗;
and

2. The sequence {Vi} where Vi+1 = TVi converges to V ∗

from any starting V0.

Contraction on subsets (Nir 8-11) Suppose T is a contraction on
a complete metric space (S, ρ), with fixed point V ∗ = TV ∗.
Further suppose Y ⊆ S is a closed set, that Z ⊆ Y , and that
∀y ∈ Y , Ty ∈ Z. Then V ∗ ∈ Z.

Blackwell’s sufficient conditions for a contraction (Nir 8-

12–3) Blackwell gives sufficient (not necessary) conditions for
an operator to be a contraction on the metric space B(Rn,R)
(the set of bounded functions Rn → R) with the sup norm.
An operator T is a contraction if it satisfies

1. Monotonicity: if ∀x, f(x) ≤ g(x), then ∀x, Tf(x) ≤
Tg(x); and

2. Discounting: there exists β ∈ (0, 1) such that for all
α ≥ 0, f(·), and x, we have T (f(x)+α) ≤ T (f(x))+βα
[slight abuse of notation].

Principle of Optimality (Nir 9) Under certain conditions, the
solutions to the following two problems are the same:

1. Sequence problem: W (x0) = max{xt+1}
∑∞
t=0 β

tF (xt, xt+1)

such that x0 given and ∀t, xt+1 ∈ Γ(xt).

2. Functional equation: V (x) = maxx′∈Γ(x)[F (x, x′) +
βV (x′)].

Assume

1. Γ(x) is nonempty for all x;

2. For all initial conditions x0 and feasible plans {xt}, the
limit u({xt}) ≡ limn→∞ βtF (xt, xt+1) exists (although
it may be ±∞).

Then:

1. If W (x0) is the supremum over feasible {xt} of u({xt}),
then W satisfies the FE.

2. Any solution V to the FE that satisfies boundedness
condition limn→∞ βnV (xn) = 0 is a solution to the
SP.

3. Any feasible plan {x∗t } that attains the supremum in
the SP satisfies W (x∗t ) = F (x∗t , x

∗
t+1) + βw(x∗t+1) for

∀t.

4. Any feasible plan {x∗t } that satisfies
W (x∗t ) = F (x∗t , x

∗
t+1) + βw(x∗t+1) for ∀t and

limn→∞ supβtW (x∗t ) ≤ 0 attains the supremum in
the SP. [?]
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So approach is: solve FE, pick the unique solution that sat-
isfies boundeness condition, construct a plan from the policy
corresponding to this solution, check the limit condition to
make sure this plan is indeed optimal for the SP.

Dynamic programming: bounded returns (Nir 10) Given the
SP/FE as above, assume:

1. x takes on values in a convex subset of Rl, and Γ(x) is
nonempty and compact-valued for all x. This implies
assumption 1 above.

2. The function F is bounded and continuous; β ∈ (0, 1).
Together with assumption 1, this implies assumption 2
above.

3. For each x′, the function F (·, x′) is increasing in each
of its first arguments.

4. Γ(·) is monotone; i.e., x1 ≤ x2 =⇒ Γ(x1) ⊆ Γ(x2).

5. F is strictly concave.

6. Γ is convex; i.e., if x′1 ∈ Γ(x1) and x′2 ∈ Γ(x2), then
θx′1 + (1− θ)x′2 ∈ Γ(θx1 + (1− θ)x2).

7. F is continuously differentiable on the interior of the set
on which it is defined.

Then

1. Under assumptions 1 and 2, the operator T where
TV (x) ≡ maxx′∈Γ(x)[F (x, x′) +βV (x′)] maps bounded
continuous functions into bounded continuous func-
tions, is a contraction (and therefore has a unique fixed
point), and is the value function for the corresponding
FE.

2. Under assumptions 1–4, the value function V (unique
fixed point of T as defined above) is strictly increasing.

3. Under assumptions 1–2 and 5–6, the value function V is
strictly concave, and the corresponding optimal policy
correspondence g is a continuous function.

4. Under assumptions 1–2 and 5–7, the value function V is
differentiable (by Benveniste-Scheinkman) and satisfies
envelope condition V ′(x0) = ∂F

∂x
|(x0,g(x0).

Benveniste-Scheinkman Theorem (Nir 10-25) Suppose

1. X ⊆ Rl is a convex set;

2. V : X → R is a concave function;

3. x0 ∈ interior(X); and D is a neighborhood of x0, with
D ⊆ X;

4. Q : D → R is a concave differentiable function with
Q(x0) = V (x0) and ∀x ∈ D, Q(x) ≤ V (x).

Then V (·) is differentiable at x0 with V ′(x0) = Q′(x0).

The envelope condition of a value function is sometimes
called the Benveniste-Scheinkman condition.

3.5 Continuous time

Dynamic systems in continuous time (Nir 14-2–3, 7) In R, the
system

ẋt = axt ≡ dxt
dt

= ax ⇐⇒ dxt
x

= a dt

⇐⇒ log xt = at+ c

⇐⇒ xt = x0e
at

converges iff real(a) < 0.

In Rn, the system ẋt = Axt ≡ ˙̃xt = Λx̃t where x̃t = P−1xt
and the eigen decomposition is A = PΛP−1. Therefore

x̃t = eΛtx̃0 =


eλ1t

. . .

eλnt

 x̃0.

For 2× 2 case (recall detA =
∏
λi and trA =

∑
λi),

detA < 0: Saddle path
detA > 0, trA > 0: Unstable

trA < 0: Sink

Linearization in continuous time (Nir 14-6, Max notes) ẋt =
f(xt) =⇒ ẋt ≈ Df (x∗)(xt − x∗). [cf discrete time
xt+1 = g(xt) =⇒ xt+1 − x∗ ≈ Dg(x∗)(xt − x∗).]

NCGM in continuous time (Nir 14-8–15) Maximize∫∞
t=0 e

−ρtU(ct) dt such that k̇t = Wt + Rtkt − ct − δkt.
The Hamiltonian is given by:

H ≡ e−ρt
[
U(ct) + λt[Wt +Rtkt − ct − δkt︸ ︷︷ ︸

Budget constraint w/o k̇t

]
]

≡ e−ρt U(ct) + µt[Wt +Rtkt − ct − δkt].

First order conditions ∂H
∂ct

= 0 and ∂H
∂kt

= − d
dt

(e−ρtλt) =

e−ρt(ρλt−λ̇t) (or equivalently, ∂H
∂kt

= −µ̇t), along with TVC

limt→∞ e−ρtλtkt = 0 (or equivalently, limt→∞ µtkt = 0),
characterize the solution. Solving gives:

ċt =
U′(ct)
U′′(ct)

(δ −Rt + ρ)

k̇t = Wt +Rtkt︸ ︷︷ ︸
=yt by CRS

−ct − δkt.

Imposing functional forms for U(·) and F (·) and log-
linearizing allows us to get a continuous time dynamic system
for k̂t and ĉt.

Log-linearization (Nir 14-24, Max notes) Write every variable x as
elog x and then linearize in log x about steady state log x∗.
Use notation x̂ ≡ log x− log x∗ ≈ x−x∗

x∗
. For example,

1. x ≈ x∗(1 + x̂);

2. xy ≈ x∗y∗(1 + x̂+ ŷ);

3. xαyβ ≈ xα∗ y
β
∗ (1 + αx̂+ βŷ);

4. f(x) ≈ f(x∗) + f ′(x∗)x∗x̂ = f(x∗)(1 + ηx̂).

Given Y = F (K,L), log-linearization gives Ŷ = ηYKK̂ +

ηY LL̂ where ηYX is the elasticity of Y with respect to X:

ηYX ≡
F ′X(K∗, L∗)X∗

F (K∗, L∗)
.

Note that ˙̂x ≡ d
dt

(log x− log x∗) = d
dt

(log x) = ẋ/x.

3.6 Uncertainty

Uncertainty: general setup (Nir 16-3–6) s ≡ {y1, . . . , yn} set
of possible states of economy. st realization at time t.
st ≡ (s0, . . . , st) “history” at time t. π(·) probability func-
tion.

Often assume a Markov process: π(st+1|st) = π(st+1|st);
i.e., only the previous period matters. Process described by
a transition matrix P where Pij = π(st+1 = yj |st = yi) with∑
j Pij = 1 for all i. “Invariant distribution” is eigenvector

π1×n = πP .

Lucas tree (Nir 16-22–4) Assume von Neumann-Morgenstern util-
ity function, thus objective function

∞∑
t=0

∑
zt

βtπ(zt)U(ct(z
t)) = E0

∞∑
t=0

βtU(ct(z
t)).

Price (at time 0) of a claim that delivers one unit at time t
given history zt is pt(zt). Budget constraint (Arrow-Debreu)
is

∞∑
t=0

∑
zt

pt(z
t)ct(z

t) ≤
∞∑
t=0

∑
zt

pt(z
t)yt(z

t)

where yt is a (stochastic) endowment. Normalizing p0 = 1
gives FOC

pt(z
t) =

βtπ(zt)U ′(yt(zt))

λ
= βtπ(zt)

U ′(yt(zt))

U ′(y0)
.

Risk-free bond pricing (Nir 16-25–6) An asset purchased at time
t that pays 1 consumption unit at time t+ 1. Price is:

qRF
t (zt) =

∑
zt+1

pt+1(zt+1, zt)

pt(zt)

= β
∑
zt+1

π(zt+1, zt)

πt(zt)

U ′(yt+1(zt+1, zt))

U ′(yt(zt))

= β
Et[U ′(yt+1(zt+1, zt))]

U ′(yt(zt))
.
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Stock pricing (Nir 16-26–7) An asset purchased at time t that pays
dividend dt(zt). Price is:

qtree
t (zt) =

∑∞
s=t+1

∑
zs ps(z

s)ds(zs)

pt(zt)

= Et

∞∑
s=t+1

βs−t
U ′(ys(zs))

U ′(yt(zt))
ds(z

s).

3.7 Manuel Amador

Lucas cost of busines cycles (Manuel) We find that the wel-
fare impact of eliminating the business cycle is very small
(< 0.04%), especially compared to the impact of raising the
growth rate of consumption. Complaints include the facts
that:

1. A representative agent is bad for measuring utility and
estimating the variance in consumption.

2. The model treats shocks as transitory; treating con-
sumption as persistent results in significantly higher
“cost” estimates.

3. Uncertainty could also affect the consumption growth
rate, which requires an endogenous growth model (not
the NCGM).

Incomplete markets: finite horizon (Manuel) Suppose a two
period model with uncertain income in the second period,
and incomplete markets in which only a risk-free bond is
available at return R. The consumer chooses savings a to
maximize u(y0 − a) + β Eu(y1 + Ra), yielding FOC (in-
tereuler)

u′(y0 − a∗) = βREu′(y1 +Ra∗).

If instead there were no uncertainty in the second period, the
analogous FOC would be

u′(y0 − â) = βRu′(E y1 +Râ).

By Jensen’s inequality, optimal savings is higher in the un-
certain world (a∗ > â) as long as u′′′ > 0.

Thus in a two period model, the difference between savings
in complete and incomplete markets depends on the sign of
u′′′.

Incomplete markets: infinite horizon (Manuel) Again, we
suppose uncertain income, and the availability of only a
risk-free bond. Taking FOC and envelope condition of

V (x) = max
a∈[φ,x]

u(x− a) +
∑
s∈S

βπ(s)V [Ra+ y(s)]

gives that V ′(x) ≥ βRE[V ′(x′)]. Thus if βR ≥ 1, we
have V ′(x) is a nonnegative supermartingale and converges
to a finite value by Dobb’s Convergence Theorem. Thus
x converges, but cannot converge to a finite value since

x∞ = Ra∗(x∞) + y, the RHS of which is stochastic. So
x→∞.

Thus in an infinite-horizon model, complete and incomplete
markets with βR = 1 necessarily look different.

Hall’s martingale hypothesis (Manuel) Suppose u(c) = Ac −
Bc2 (which may be a second-order Taylor expansion of the
true utility function), and that only a risk-free bond is avail-
able, with Rβ = 1. Intereuler gives that E ct+1 = ct; that is,
{ct} follows an AR(1) process.

However, many models have c today as a predictor of c to-
morrow, even without the same intereuler (e.g., the Aiyagari
model). Tests are always rejected, but are generally run with
aggregate data, with resulting problems of

1. Goods aggregation (i.e., how do you define consumption
given a basket of goods?),

2. Agent aggregation (i.e., even if intereuler holds for each
of hetrogeneous agents, it may not hold in aggregate),

3. Time aggregation (i.e., how do you deal with data that
is in discrete time period “chunks”?).

The presence of durable goods introduces an MA component
to {ct}, making it an ARMA process.

One-sided lack of commitment (Manuel) One reason markets
might be incomplete is a lack of commitment. Suppose risk-
averse consumuer can borrow from a risk-neutral lender, but
can’t commit to repayment. Suppose Rβ = 1; lender takes
stochastic endowment and gives consumer consumption c(s)
today, promising consumer future lifetime value w(s). Thus
value to lender is:

P (v) = max
{c(s),w(s)}s

∑
s∈S

π(s)
[
y(s)− c(s) + βP (w(s))

]
such that

[PK (µ)] :
∑
s∈S

π(s)
[
u(c(s)) + βw(s)

]
≥ v,

[IC (λ(s))] : u(c(s)) + βw(s) ≥ u(y(s)) + β vautarky︸ ︷︷ ︸
E
u(y(s′))

1−β

.

FOCs and envelope condition give that

1

u′(c(s′)
=

1

u′(c(s)
+ λ(s′),

so consumption is weakly increasing over time. This is not
consistent with G.E., where we therefore must have Rβ < 1.

Two-sided lack of commitment (Manuel) [Kocherlakota] Sup-
pose two risk-averse consumuers who each get a stochastic

endowment that has no aggregate shock. Neither can com-
mit to remain in an insurance contract. Value to insurer in
excess of autarky is:

Q(∆0, s0) =

max
c,{∆(s)}s

u(1− c)− u(1− y(s0)) + β
∑
s∈S

π(s)Q(∆(s), s)

such that

[PK (µ)] : u(c)− u(y(s0)) + β
∑
s∈S

π(s)∆(s) ≥ ∆0,

[IC-1 (βπ(s)λ(s))] : ∆(s) ≥ 0,

[IC-2 (βπ(s)θ(s))] : Q(∆(s), s) ≥ 0.

FOCs and envelope condition give that

Q′(∆0, s0) = λ(s) + (1 + θ(s))Q′(∆(s), s),

thus either consumption stays the same, increases the the
lowest level that satisfies IC-1, or falls to the highest level
that satisfies IC-2.

Bulow-Rogoff defaultable debt model (Manuel) An agent
(who need only have monotone preferences) cannot com-
mit to repay a risk-neutral insurer; if he defaults, he will
only be able to save in a complete-markets “Swiss bank
account” that pays expected return R.

If wealth

W (st) ≡
∑
τ≥t

∑
sτ

π(sτ |st)
y(sτ )

Rτ−t

is finite for all st, and we impose no Ponzi condition (natural
borrowing constraint) that debt

D(st) ≡
∑
τ≥t

∑
sτ

π(sτ |st)
p(sτ )

Rτ−t
≤W (st)

for all st, then debt will always be nonpositive—if the agent
were ever a borrower, he would do better to defect.

Thus to get (e.g., international) debt, we need either

1. Infinite wealth in some state st,

2. A limited ability to save in nearly-complete markets, or

3. Lenders’ ability to punish.

Hyperbolic discounting (Manuel) Agent has a higher discount
rate between today and tomorrow than between tomorrow
and following periods (time-inconsistent). Often parameter-
ized as “β-δ discounting”:

u(ct) + β
∞∑
τ=1

δτu(ct+τ ).

Caution: Suppose an agent only likes candy bars when he’s
healthy. If he knows he’s healthy today, he may prefer 1 to-
day to 2 tomorrow, but 2 the day after tomorrow to 1 tomor-
row. This may wind up looking like hyperbolic discounting,
but isn’t.
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3.8 John Taylor

Taylor Rule (Taylor) A policy rule (or family of policy rules given
different coefficients) for the nominal interest rate as a func-
tion of (four-quarter average) inflation and the GDP output
gap (expressed as a percentage deviation from trend):

i = π + 0.5y + 0.5(π − 2) + 2

= 1.5︸︷︷︸
>1

π + 0.5y + 1.

The “greater than one” principal suggests that the coefficient
on inflation should exceed one.

Granger causality (Taylor) pt Granger causes yt iff the er-
ror from predicting yt based on lagged y and p
(σ2

prediction(yt|pt−1, pt−2, . . . , yt−1, yt−2, . . . )) is less than

the prediction error from predicting yt based on lagged y only
(σ2

prediction(yt|yt−1, yt−2, . . . )). Note this is not a “philo-

sophical” point, and does not address causation vs. correla-
tion issues.

That is, the hypothesis that p does not Granger cause y is
the hypothesis that coefficients on lagged ps are all zero.

Okun’s Law (Taylor)

Y − Y ∗

Y
= −2.5(u− u∗)

where Y ∗ is potential GDP and u∗ is the natural rate of
unemployment.

Cagan money demand (Taylor) mt−pt = ayt−bit, where money
supply m, price level p, and output gap y are all logs. LHS
is real money balance; when interest rate is higher, demand
for money is lower (semi-log specification).

Note Lucas prefers log-log specification mt − pt = ayt −
b log(it).

Rational expectations models (Taylor) Variables in system are
a function of exogenous shocks, lags, and expected future
values of variables. General solution method:

1. Set up in vector notation (may require time shifting and
substitution.

2. Use method of undetermined coefficients to get a (de-
terministic) difference equation in the coefficients (γi)
on the MA(∞) representation of variables.

3. Guess a form for the particular solution, and solve for
coefficients.

4. Cholesky decompose the coefficient matrix (A =
HΛH−1) in the homogenous part of the determinis-
tic difference equation to get a decoupled equation (in
µi ≡ H−1γH

i ).

5. Apply stability condition to pin down some element(s)
of µ0.

6. Use γ0 = Hµ0 + µP
0 as another equation to solve for

solution.

Cagan model (Taylor) Rational expectations model given by:

mt − pt = −β(p̂t+1 − pt).

Derived from Cagan money demand equation with

1. Either zero coefficient on yt, or yt = 0 for all t, and

2. rt ignored in it = rt + π̂t+1 = rt + p̂t+1 − pt.

Price reactions to money supply shocks are not quite one-
for-one, since there’s an anticipated future deflation which
causes people to hold some of the extra money.

Dornbush model (Taylor) Rational expectations model given by:

mt − pt = −α(êt+1 − et)
pt − pt−1 = β(et − pt).

(Note higher e is currency depreciation.)

Prices adjust gradually, but the exchange rate overshoots.
By first equation, if money supply is shocked there must be
expected future currency appreciation (e ↓); but there must
be long run depreciation (e ↑) by second equation.

Philips Curve (Taylor) Connection between inflation and either
GDP gap or unemployment (by Okun’s Law).

1. Traditional (short-run):

π = ϕsry = −2.5ϕsr(u− u∗).

2. Expectations-augmented (long-run):

π = π̂ + ϕlry = π̂ − 2.5ϕlr(u− u∗).

Time inconsistency (Taylor) Three types of policy plans π2 that
aim to maximize social welfare S(x1, x2, π1, π2) where π are
policies and x are responses (including expectations of pol-
icy):

1. Consistent (discretion): Take x1 as given when choosing
π2.

2. Optimal (rule-based): Recognize that x1 responds to
π2.

3. Inconsistent (cheating): Promise optimal, but then
name consistent.

Lucas supply function (Taylor) yt = φ(πt − π̂t) + εt. Can be
seen directly from Expectations-augmented Philips curve.

4 Mathematics

4.1 General mathematical concepts

Elasticity (Wikipedia) Elasticity of f(x) is

∣∣∣∣∂ log f(x)

∂ log x

∣∣∣∣ =

∣∣∣∣∂f∂x · x

f(x)

∣∣∣∣ =

∣∣∣∣∂f/f∂x/x

∣∣∣∣ =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
Euler’s law (Producer 14) If f is differentiable, it is homogeneous

of degree k iff p · ∇f(p) = kf(p).

One direction proved by differentiating f(λp) = λkf(p) with
respect to λ, and then setting λ = 1. Implies that if f is ho-
mogeneous of degree one, then ∇f is homogeneous of degree
zero.

Strong set order (Producer 32) A ≤ B in the strong set order iff
for all a ∈ A and b ∈ B with a ≥ b, then a ∈ B and b ∈ A.
Equivalently, every element in A \ B is ≤ every element in
A ∩B, which is ≤ every element in B \A.

Meet (Producer 36) For x, y ∈ Rn, the meet is x ∧ y ≡
(min{x1, y1}, . . . ,min{xn, yn}). More generally, on a par-
tially ordered set, x∧ y is the greatest lower bound of x and
y.

Join (Producer 36) For x, y ∈ Rn, the meet is x ∨ y ≡
(max{x1, y1}, . . . ,max{xn, yn}). More generally, on a par-
tially ordered set, x ∨ y is the least upper bound of x and
y.

Sublattice (Producer 37) A set X is a sublattice iff ∀x, y ∈ X, we
have x ∧ y ∈ X and x ∨ y ∈ X. Any sublattice in Rn can be
described as an intersection of sets of the forms

1. A product set X1 × · · · ×Xn; or

2. A set {(x1, . . . , xn) : xi ≤ g(xj)}, where g(·) is an in-
creasing function.

Orthants of Euclidean space (?)

1. Rn+ ≡ {x : x ≥ 0} ≡ {x : xi ≥ 0 ∀i}, which includes the
axes and 0.

2. {x : x > 0} ≡ {x : xi ≥ 0 ∀i} \ 0, which includes the
axes, but not 0.

3. Rn++ ≡ {x : x � 0} ≡ {x : xi > 0∀i}, which includes
neither the axes nor 0.
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Sum of powers (?)

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
n2(n+ 1)2

4

n∑
i=1

i4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

Geometric series (?)

n∑
i=0

aRi =
a(1−Rn+1)

1−R
∞∑
i=0

Ri =
a

1−R
(if |R| < 1)

4.2 Set theory

Supremum limit (Math camp) lim supn An ≡ limn An ≡⋂∞
n=1

⋃∞
k=n Ak. Set of all elements appearing in an infinite

number of Ai.

Infimum limit (Math camp) lim infn An ≡ limn An ≡⋃∞
n=1

⋂∞
k=n Ak. Set of all elements appearing in all but

a finite number of Ai.

Partition (Math camp) {Aα} such that Aα ⊆ A and

1. Non-empty: Aα 6= ∅;

2. Exhaustive:
⋃
Aα = A;

3. Non-overlapping: Ai 6= Aj =⇒ Ai ∩Aj = ∅.

Convex set (Math camp) ∀x and x′ ∈ S, ∀t ∈ [0, 1], tx+(1− t)x′ ∈
S (i.e., the linear combination of any two points in S is also
in S.)

4.3 Binary relations

Complete (Math camp) aRb ∨ bRa.

Transitive (Math camp) aRb ∧ bRc =⇒ aRc.

Symmetric (Math camp) aRb ⇐⇒ bRa.

Negative transitive (Math camp) aRb =⇒ cRb ∨ aRc.

Reflexive (Math camp) aRa.

Irreflexive (Math camp) a 6= b =⇒ aRb.

Asymmetric (Math camp) aRb ∧ b 6= c =⇒ cRa.

Equivalence relation (Math camp) A binary relation that is re-
flexive, symmetric, and transitive.

4.4 Functions

Function (Math camp) A binary relation that is

1. Well defined on its range: ∀x, ∃y such that xRy;

2. Uniquely defined on its range: xRy ∧ xRz =⇒ y = z.

Surjective (Math camp) Range is Y . (a.k.a. “onto.”)

Injective (Math camp) x 6= x′ =⇒ f(x) 6= f(x′).

Bijective (Math camp) Both surjective and injective. (a.k.a. “one-
to-one.”)

Monotone (C&B p. 50) g(x) monotone on its domain iff either u >
v =⇒ g(u) > g(v) (increasing), or u < v =⇒ g(u) < g(v)
(decreasing). A monotone function is one-to-one and onto
from its domain to its image (note, not necessarily to its
range).

Convex function (Hansen 2-22) g : Rn → R is convex iff ∀x, y ∈
Rn, ∀λ ∈ [0, 1], λg(x) + (1− λ)g(y) ≥ g(λx+ (1− λ)y).

Binomial theorem (C&B 3.2.2) For any x, y ∈ R and n ∈ Z,
n ≥ 0, then (x+ y)n =

∑n
i=0

(n
i

)
xiyn−i. Special cases: 1 =

(p+ (1− p))n =
∑n
i=0

(n
i

)
pi(1− p)n−i and 2n =

∑n
i=0

(n
i

)
.

Gamma function (C&B p. 99) Γ(α) ≡
∫∞
0 tα−1e−t dt =∫ 1

0 [log(1/t)]α−1 dt on α > 0. (Γ is also defined everywhere
else except for 0,−1,−2, . . . .)

1. Γ(α+ 1) = αΓ(α), when α > 0.

2. Γ(n) = (n− 1)! for integer n > 0.

3. Γ( 1
2

) =
√
π.

-20
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-10

-5

 0

 5

 10

 15

 20

-4 -2  0  2  4

gamma(x)

Beta function (C&B eq. 3.3.17) B(α, β) ≡ Γ(α) · Γ(β)/Γ(α+ β).

Logistic function (D&M 515; Metrics P.S. 5-4a)

Λ(x) ≡ (1 + e−x)−1 ≡
ex

1 + ex
.

Inverse is Λ−1(µ) ≡ `(µ) ≡ log[µ/(1− µ)]. First derivative

λ(x) ≡ Λ′(x) ≡
ex

(1 + ex)2
= Λ(x)(1− Λ(x)) = Λ(x)Λ−x.

Taylor series (C&B 5.5.20–1) If g(x) has derivatives of order r (i.e.,
g(r)(x) exists), then for any constant a the Taylor polynomial
of order r about a is:

g(x) ≈ Tr(x) ≡
r∑
i=0

g(i)(a)

i!
(x− a)i.

The remainder from the approximation Taylor approxima-
tion, g(x) − Tr(x) equals

∫ x
a g

(r+1)(t) · (x − t)r/r! dt. This
error always tends to 0 faster than the highest-order explicit
term—i.e., limx→a[g(x)− Tr(x)]/(x− a)r = 0.

Derivative of power series (Hansen 2-29) If g(t) ≡ a0 + a1t +
a2t2 + · · · =

∑
i ait

i, then

∂k

∂tk
g(t)

∣∣∣∣
t=0

= akk!.

This is useful for calculating moments if we can express the
mgf as a power series.

Taylor series examples (?) f(x) ≈ f(x′) + ∇f(x′) · (x − x′).
Note that for concave (convex) f(·), the LHS is weakly less
(greater) than the RHS.

For small ε, we have:

enε ≈ 1 + nε;

(1 + αε)n ≈ 1 + αnε;

log(1 + ε) ≈ ε;
aε − 1

ε
≈ log a.

Second-order is

f(x) ≈ f(x′) +∇f(x′) · (x−x′) + 1
2

(x−x′) ·∇2f(x′)(x−x′).

Mean value expansion (Mahajan 3-13; Hayashi 470–1) If h : Rp →
Rq is a continuously differentiable function, then h(·) admits
a mean value expansion about θ

h(b) = h(θ) +
∂h(b̄)
∂b

(b− θ)

where b̄ is a value lying between b and θ (note the MVT ap-
plies to individual elements of h(·), so b̄ actually differs from
element to element in the vector equation.
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4.5 Correspondences

Correspondence (Micro math 5) φ : X ⇒ Y is a mapping from
elements of X to subsets of Y (i.e., for x ∈ X, we have
φ(x) ⊆ Y ).

Lower semi-continuity (Micro math 7; Clayton G.E. I) φ : X ⇒ Y
is lower semi-/hemi-continuous at x ∈ X iff for every open
set G ⊆ Y containing φ(x), there is an open set U(x) ⊆ X
containing x such that if x′ ∈ U(x), then φ(x′) ∩G 6= ∅.

Intuitively, any element in φ(x) can be “approached” from
all directions.

For a single-valued correspondence (i.e., a function), lsc
⇐⇒ usc ⇐⇒ continuous.

Upper semi-continuity (Micro math; Clayton G.E. I; Bernheim 32)

φ : X ⇒ Y is upper semi-/hemi-continuous at x ∈ X iff
for every open set G ⊆ Y containing φ(x), there is an open
set U(x) ⊆ X containing x such that if x′ ∈ U(x), then
φ(x′) ⊂ G.

Identically, if for any sequences xt → x and yt → y with
yt ∈ φ(xt) for all t, we have y ∈ φ(x).

Intuitively, φ(x) does not “suddenly contain new points;”
i.e., the graph of the function is a closed set.

For a single-valued correspondence (i.e., a function), usc
⇐⇒ lsc ⇐⇒ continuous.

Brouwer’s Fixed Point Theorem (Clayton G.E. I) If a function
f : A→ A is continuous, and A is compact and convex, then
f(x) = x for some fixed point x ∈ A.

Kakutani’s Fixed Point Theorem (Clayton G.E. I; Bernheim 32)

Suppose S is compact and convex. γ : S ⇒ S is convex-
valued and upper semi-continuous. Then there exists a fixed
point s∗ ∈ S such that s∗ ∈ γ(s∗).

4.6 Linear algebra

Matrix (Amemiya Ch. 11) Matrix An×m ≡ {aij} has n rows and m
columns.

1. Square iff n = m.

2. Transpose A′ ≡ {aji} is m× n.

3. Symmetric iff square and ∀i, j, aij = aji, or equiva-
lently iff A = A′.

4. Diagonal iff ∀i 6= j, aij = 0 (i.e., nondiagonal elements
are 0).

Matrix multiplication (Amemiya Ch. 11) If c is a scalar, cA =
Ac = {caij}. If A is n×m and B is m× r, then C = AB is
an n × r matrix with cij =

∑m
k=1 aikbkj . If AB is defined,

then (AB)′ = B′A′.

Determinant (Amemiya Ch. 11; Greene 23–6) |A| ≡∑
i(−1)i+jaij |Aij |, where j is an arbitrarily chosen in-

teger and Aij is the matrix that deletes the ith row and jth
column from A.

This is the volume of the parallelotope with edges along the
columns of A.

1. Determinant of a 2× 2 matrix A is a11a22 − a12a21.

2. Determinant of a 3 × 3 matrix A is a11a22a33 −
a11a32a23 − a21a12a33 + a21a32a13 + a31a12a23 −
a31a22a13.

3. |A| = |A′|.

4. For diagonal A, |A| =
∏
i aii; thus |I| = 1.

5. |cAn×n| = cn|A|.

6. If A, B both n×n, then |AB| = |A| |B|; together with
|I| = 1, this gives |A−1| = |A|−1.

7. If any column/row of A is all zeroes, |A| = 0; switch-
ing two adjacent columns/rows changes the sign of the
determinant; if two c/rs are identical, the determinant
is zero.

8. For any eigenvalue λ, |A− λI| = 0.

9. |An×n| =
∏
i λi (i.e., determinant is the product of

eigenvalues).

Matrix inverse (Amemiya Ch. 11; Greene 30–1) A−1A = AA−1 = I
for any matrix A such that |A| 6= 0.

1. If A, B both n × n, and |A| 6= 0, |B| 6= 0, then
(AB)−1 = B−1A−1.

2. If A−1 exists, then (A−1)′ = (A′)−1.

3. The inverse of a 2× 2 matrix is[
a b
c d

]−1

=
1

|A|

[
d −b
−c a

]
=

1

ad− bc

[
d −b
−c a

]
.

4. For diagonal A, the inverse is diagonal with elements
a−1
ii .

Orthogonal matrix (Amemiya Ch. 11) A square matrix An×n is or-
thogonal iff A′ = A−1. This corresponds to having columns
orthogonal and normalized.

Trace (Amemiya Ch. 11; Metrics section; Greene 41–2) tr(An×n) ≡
∑
i aii

(i.e., the sum of the diagonal elements).

1. tr(cA) = c tr(A).

2. tr(A′) = tr(A).

3. tr(A + B) = tr(A) + tr(B).

4. tr(An×mBm×n) = tr(BA).

5. Trace is the sum of eigenvalues: tr(An×n) =
∑
i λi.

6. tr(An×mA′) = tr(A′A) =
∑n
i=1

∑m
j=1 a

2
ij =∑m

j=1 a
′
jaj =

∑m
j=1 tr(aja

′
j), where ai are the columns

of A.

Caution: in general, tr(AB) 6= tr(A) · tr(B).

Linear independence, rank (Amemiya Ch. 11; Greene 20–3, 39) Vec-
tors {xi} linearly independent iff

∑
i cixi = 0 =⇒ ∀i,

ci = 0.

1. The following are equivalent and called nonsingularity
of square A:

• |A| 6= 0, A−1 exists;

• A is column independent or row independent;

• ∀y, ∃x, Ax = y;

• Ax = 0 =⇒ x = 0.

2. Column rank (maximum number of linearly indepen-
dent columns) equals row rank, which implies rank A =
rank A′.

3. An×m is full rank iff rank equals min(n,m); a square
matrix is full rank iff it is nonsingular.

4. rank(A) = rank(A′A) = rank(AA′); in particular,
An×m with m ≤ n (i.e., “tall”) is full rank iff A′A
is nonsingular.

5. A is nonsingular =⇒ rank(AB) = rank(B).

6. rank(An×n) equals the number of nonzero eigenvalues
(not necessarily distinct).

Eigen decomposition (Mathworld) For any square A with Λ a di-
agonal matrix containing eigenvalues of A, and P a matrix
whose columns are the eigenvectors of A (ordered as in Λ),
then A = PΛP−1.

Orthogonal decomposition (Amemiya Ch. 11; Greene 37–8) a.k.a.
spectral decomposition. For any symmetric A, ∃Hn×n,
Λn×n such that A = HΛH′, where H′H = I (i.e., H is
orthogonal) and Λ is diagonal. Note that H′AH = Λ.

This is just the eigen decomposition for a symmetric matrix;
here the matrix of eigenvectors is orthogonal.

Matrix squareroot (Greene 42) Given a positive definite symmet-
ric matrix A = HΛH′, we can get a (symmetric!) matrix
squareroot A1/2 ≡ HΛ1/2H′, where Λ1/2 is the diagonal
matrix that takes the squareroot of diagonal elements of Λ.

Eigenvector, eigenvalue (Amemiya Ch. 11; Woodford 670–2) Note
some results may only hold for symmetric matrices (not made
explicit in Amemiya). Let the orthogonal decomposition of
symmetric A be A = HΛH′, where H is orthogonal and Λ
is diagonal.

1. Diagonal elements of Λ ≡ D(λi) are eigenvalues (a.k.a.
characteristic roots) of A; columns of H are the corre-
sponding eigenvectors (a.k.a. characteristic vectors).

46



2. If h is the eigenvector corresponding to λ, then Ah =
λh and |A − λI| = 0. (This is an alternate definition
for eigenvectors/eigenvalues.)

3. Matrix operations f(A) can be reduced to the corre-
sponding scalar operation: f(A) = HD[f(λi)]H

′.

4. rank(An×n) equals the number of nonzero eigenvalues
(not necessarily distinct).

5. An×mBm×n and BA have the same nonzero eigenval-
ues.

6. Symmetric An×n and Bn×n can be diagonalized by the
same orthogonal matrix H iff AB = BA.

7. |An×n| =
∏
i λi (i.e., determinant is the product of

eigenvalues).

8. tr(An×n) =
∑
i λi (i.e., trace is the sum of eigenval-

ues).

9. A and A−1 have same eigenvectors and inverse eigen-
values.

A 2× 2 matrix A has two explosive eigenvalues (outside the
unit circle) iff either

• Case I:

|A|+ tr A ≥ −1,

|A| − tr A ≥ −1,

|A| ≤ 1.

• Case II:

|A|+ tr A ≤ −1,

|A| − tr A ≤ −1,

|A| ≤ 1 (trivially).

Positive definiteness, &c. (Amemiya Ch. 11; Greene 46–9) Symmet-
ric A is positive definite iff ∀x 6= 0, x′Ax > 0. Also written
A > 0; if A−B is positive definite, write A > B. If equal-
ity isn’t strict, A is positive semidefinite (a.k.a. nonnegative
definite). Negative definite and negative semidefinite (a.k.a.
nonpositive definite) similarly defined.

1. A symmetric matrix is positive definite iff its eigenval-
ues are all positive; similar for other (semi-)definiteness.

2. If A > 0, all diagonal elements are > 0 (consider a
quadratic form with a unit vector).

3. B′B ≥ 0; if B has full column rank, then B′B > 0.

4. A > 0 =⇒ A−1 > 0 (i.e., the inverse of a positive
definite matrix is positive definite).

5. ∀Bn×k “tall” (i.e., n ≥ k), An×n ≥ 0 =⇒ B′AB ≥ 0.
If B is full rank (i.e., rank(B) = k), then An×n >
0 =⇒ B′AB > 0.

6. For An×n and Bn×n both positive definite, A ≥
B ⇐⇒ B−1 ≥ A−1, and A > B ⇐⇒ B−1 > A−1.

7. A ≥ 0 =⇒ |A| ≥ 0 and A > 0 =⇒ |A| > 0—
note the natural analogues for negative (semi)definite
matrices do not hold.

Orthogonal completion (Hansen 5-24) For a “wide” matrix An×k
(i.e., n < k) with full row rank (i.e., all rows are linearly inde-
pendent), we can construct a (non-unique) (k−n)×k matrix
A⊥ such that:

1. The rows of A and A⊥ are linearly independent (i.e.,
|(A′,A′⊥)| 6= 0;

2. The rows of A⊥ are orthogonal to the rows of A (i.e.,
A⊥A′ = 0k−n×n, or identically, AA′⊥ = 0n×k−n).

For a “tall” matrix Bn×k (i.e., n > k) with full column rank
(i.e., all columns are linearly independent), we can construct
a (non-unique) n× (n− k) matrix B⊥ such that:

1. The columns of B and B⊥ are linearly independent (i.e.,
|(B,B⊥)| 6= 0;

2. The columns of B⊥ are orthogonal to the columns
of B (i.e., B′⊥B = 0n−k×k, or identically, B′B⊥ =
0k×n−k).

Idempotent matrix (Hansen 5-33–4; Amemiya 37; Hayashi 30–1, 36–7,

244-5) P is idempotent iff PP = P.

1. If P is idempotent, then so is I−P.

2. Every eigenvalue of a (symmetric?) idempotent matrix
is either 0 or 1.

3. A symmetric and idempotent matrix is positive semidef-
inite.

4. For any Xn×k, we can find an idempotent projection
matrix (that projects onto the subspace of Rn spanned
by the columns of X): PX ≡ X(X′X)−1X′.

5. For any Xn×k tall (i.e., n > k), we can find an idempo-
tent projection matrix (that projects onto the subspace
of Rn not spanned by columns of X): I−PX = PX⊥ .

6. rank(P) = tr(P) if P is idempotent.

Matrix derivatives (Ying handout; Greene 51–53; MaCurdy) [Note
derivative convention may be transpose of MWG.]

1. ∂
∂x

Ax = A′.

2. ∂
∂x

x′Ax = (A + A′)x.

3. ∂
∂A

x′Ax = xx′.

4. ∂
∂A

log |A| = A′−1.

5. ∂
∂A−1 log |A| = −A′.

6. ∂
∂w

log |A| = |A|−1 · ∂
∂w
|A| = tr[A−1 · ∂

∂w
A] (may re-

quire symmetric A?).

7. ∂
∂w

A−1 = −A−1[ ∂
∂w

A]A−1 (may require symmetric
A?).

Partitioned matrices (Hayashi 670–673; Greene 32–3)∣∣∣∣[A11 A12

A21 A22

]∣∣∣∣ = |A22| · |A11 −A12A−1
22 A21|

= |A11| · |A22 −A21A−1
11 A12|;A11 · · · A1N

...
. . .

...
AM1 · · · AMN


 c1

...
cN

 =


∑
i A1ici

...∑
i AMici

 ;

A11

. . .

AMM


 c1

...
cN

 =

 A11c1

...
AMMcM

 ;

AdiagBdiag =

A11B11

. . .

AMMBMM

 ;

A′diagBAdiag

=

 A′11B11A11 · · · A′11B1MAMM

.

..
. . .

...
A′MMBM1A11 · · · A′MMBMMAMM

 ;

A′diagBc

=

 A′11B11c1 + . . .+ A′11B1McM
...

A′MMBM1c1 + . . .+ A′MMBMMcM

 ;

A−1
diag =


A−1

11

. . .

A−1
MM

 .
The inverse of a 2× 2 partitioned matrix is:[

A11 A12

A21 A22

]−1

=

[
A−1

11 + A−1
11 A12F2A21A−1

11 −A−1
11 A12F2

−F2A21A−1
11 F2

]
,

where F2 ≡ (A22 −A21A−1
11 A12)−1. The upper left block

can also be written as F1 ≡ (A11 −A12A−1
22 A21)−1

Kronecker product (Hayashi 673; Greene 34–5) For AM×N and
BK×L,

A⊗B =

 a11B · · · a1NB
..
.

. . .
..
.

aM1B · · · aMNB


is MK ×NL. Operation is not commutative.

1. (A⊗B)(C⊗D) = AC⊗BD (assuming matrix multi-
plications are conformable);
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2. (A⊗B)′ = A′ ⊗B′;

3. (A⊗B)−1 = A−1 ⊗B−1;

4. tr(AM×M ⊗BK×K) = tr(A) · tr(B);

5. |AM×M ⊗BK×K | = |A|M · |B|K .

Deviation from means (Hansen 5-34–5; Greene 14–5) Mιx is the
vector of xi − x̄, and x′Mιx =

∑
i(xi − x̄)2, where

Mι ≡ I− ι(ι′ι)−1ι′ = I− 1
n
ιι′

is the symmetric idempotent matrix with 1− 1
n

on diagonal,

and − 1
n

off diagonal.∗
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Index

Γ(·) (Gamma function), 45
Φ(·) (standard normal cdf), 7
α3 (skewness), 7
α4 (kurtosis), 7
β-δ discounting, 43
χ2 distribution, 8
µ (expected value), 6
µn (central moment), 7
µ′n (moment), 7
φ(·) (characteristic function), 7
φ(·) (standard normal pdf), 7
ρ (correlation), 7
σ (standard deviation), 7
σ2 (variance), 7
0-1 loss, 14
2SLS (Two-Stage Least Squares), 21
3SLS (Three-Stage Least Squares), 22

Absolute risk aversion, 33
Absolute value loss, 14
Action space, 14
Adding-up, 29
Additively separability with stationary discounting, 40
Adverse selection, 38
Aggregating consumer demand, 32
AIIA (Arrow’s independence of irrelevant alternatives), 39
Almost sure convergence, 10
Alternate hypothesis, 14
Analogy principle, 11
Ancillary statistic, 11
Annihilator matrix, 18
Anonymity, 39
AR(1) (autoregressive process of degree one), 16
AR(p) (autoregressive process of degree p), 16
ARCH (autoregressive conditional heteroscedastic) process, 17
ARMA process of degree (p, q), 16
Arrow’s independence of irrelevant alternatives, 39
Arrow’s Theorem, 39
Arrow-Pratt coefficient of absolute risk aversion, 33
Ascending price auction, 37
Associativity, 4
Asymmetric, 45
Asymptotic equivalence, 10
Asymptotic normality for GMM estimator, 13
Asymptotic normality for M-estimator, 13
Asymptotic normality for MD estimator, 13
Asymptotic normality for MLE, 12
Asymptotic properties of OLS estimator, 18
Asymptotic significance, 15
Asymptotic size, 15
Asymptotic variance, 12
Asymptotically efficient estimator, 12
Asymptotically normal estimator, 12
Autocovariance, 15

Autoregressive conditional heteroscedastic process, 17
Autoregressive process of degree p, 16
Autoregressive process of degree one, 16
Autoregressive/moving average process of degree (p, q), 16
Axioms of Probability, 4

B(·) (Beta function), 45
B1 (Borel field), 4
Banach fixed point theorem, 41
Basic set theory, 4
Basu’s theorem, 11
Bayes’ Rule, 4
Bayesian Nash equilibrium, 36
Benveniste-Scheinkman Theorem, 42
Bernoulli utility function, 32
Bertrand competition, 36
Bertrand competition—horizontal differentiation, 36
Bertrand competition—non-spatial differentiation, 36
Bertrand competition—vertical differentiation, 36
Best linear predictor, 18
Best linear unbiased estimator, 18
Best unbiased estimator, 13
Beta function, 45
Biases affecting OLS, 18
Big O error notation, 10
Bijective, 45
Billingsley CLT, 16
Binary response model, 24
Binomial theorem, 45
Bivariate normal distribution, 8
Blackwell’s sufficient conditions for a contraction, 41
BLP (best linear predictor), 18
BLUE (best linear unbiased estimator), 18
BNE (Bayesian Nash equilibrium), 36
Bonferroni’s Inequality, 25
Boole’s Inequality, 25
Borel field, 4
Borel Paradox, 5
Brouwer’s Fixed Point Theorem, 46
Brownian motion, 24
BS (Benveniste-Scheinkman Theorem), 42
Budget set, 31
BUE (best unbiased estimator), 13
Bulow-Rogoff defaultable debt model, 43

Cagan model, 44
Cagan money demand, 44
CARA (constant absolute risk aversion), 33
Carrier axiom, 38
Cauchy sequence, 41
Cauchy-Schwarz Inequality, 25
cdf (cumulative distribution function), 5
CE (correlated equilibrium), 35
Censored response model, 25
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Central Limit Theorem for MA(∞), 16
Central Limit Theorem for ergodic stationary mds, 16
Central Limit Theorem for iid samples, 10
Central Limit Theorem for niid samples, 10
Central Limit Theorem for zero-mean ergodic stationary processes, 16
Central moment, 7
Certain equivalent, 33
Certain equivalent rate of return, 33
Characteristic function, 7
Characteristic root, 46
Characteristic vector, 46
Chebychev’s Inequality, 25
Chi squared distribution, 8
Choice rule, 27
CLT (Central Limit Theorem) for MA(∞), 16
CLT (Central Limit Theorem) for ergodic stationary mds, 16
CLT (Central Limit Theorem) for iid samples, 10
CLT (Central Limit Theorem) for niid samples, 10
CLT (Central Limit Theorem) for zero-mean ergodic stationary processes, 16
CMT (Continuous Mapping Theorem), 9
CMT (Contraction Mapping Theorem), 41
Cobb-Douglas production function, 40
Coefficient of absolute risk aversion, 33
Coefficient of relative risk aversion, 33
Commutativity, 4
Compensated demand correspondence, 31
Compensating variation, 32
Competitive producer behavior, 28
Complement goods, 31
Complement inputs, 30
Complete, 45
Complete information, 34
Complete metric space, 41
Complete statistic, 11
Completeness, 27
Conditional expectation, 6
Conditional factor demand correspondence, 29
Conditional homoscedasticity, 10
Conditional pdf, 5
Conditional pmf, 5
Conditional probability, 4
Conditional variance, 7
Condorcet winner, 39
Condorcet-consistent rule, 39
Consistency for for MLE, 12
Consistency for GMM estimators, 13
Consistency with compact parameter space, 11
Consistency without compact parameter space, 12
Consistent estimator, 11
Consistent strategy, 36
Consistent test, 15
Constant relative risk aversion utility function, 40
Constant returns to scale, 28
Consumer welfare: price changes, 32
Continuous function, 41
Continuous Mapping Theorem, 9, 10
Continuous preference, 28

Continuous r.v., 5
Contract curve, 33
Contraction, 41
Contraction Mapping Theorem, 41
Contraction on subsets, 41
Convergence almost surely, 10
Convergence in Lp, 10
Convergence in distribution, 10
Convergence in mean square, 10
Convergence in probability, 9
Convergence in quadratic mean, 10
Convergent sequence, 41
Convex function, 45
Convex game, 38
Convex preference, 28
Convex set, 45
Convexity, 28
Convolution formulae, 6
Core, 37
Core convergence, 37
Correlated equilibrium, 35
Correlation, 7
Correspondence, 46
Cost function, 29
Cost minimization, 29
Cost of business cycles, 43
Counting, 4
Cournot competition, 36
Covariance, 7
Covariance stationarity, 15
Cramér-Rao Inequality, 14
Cramér-Wold Device, 10
Critical region, 14
CRLB (Cramér-Rao lower bound), 14
CRRA (coefficient of relative risk aversion), 33
CRRA (constant relative risk aversion), 33
CRRA (constant relative risk aversion) utility function, 40
CRS (constant returns to scale), 28
CS (Marshallian consumer surplus), 32
Cumulant generating function, 7
Cumulative distribution function, 5
CV (compensating variation), 32

DARA (decreasing absolute risk aversion), 33
Decision rule, 14
Defaultable debt, 43
Deferred acceptance algorithm, 38
Delta Method, 10
Demand for insurance, 33
DeMorgan’s Laws, 4
Derivative of power series, 45
Descending price auction, 37
Determinant, 46
Deviation from means, 48
Diagonal matrix, 46
Dickey-Fuller Test, 24
Difference-stationary process, 24
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Direct revelation mechanism, 34
Discrete r.v., 5
Disjointness, 4
Distance function principle, 14
Distributive laws, 4
Dixit-Stiglitz aggregator, 40
Dobb’s Convergence Theorem, 43
Dominant strategy, 35
Dominated strategy, 35
Donsker’s Invariance Principle, 24
Dornbush model, 44
DRRA (decreasing relative risk aversion), 33
Dummy axiom, 38
Durbin-Wu-Hausman test, 21
Dutch auction, 37
DWH (Durbin-Wu-Hausman) test, 21
Dynamic programming: bounded returns, 42
Dynamic systems, 41
Dynamic systems in continuous time, 42

Edgeworth box, 33
Efficient GMM, 13, 20
EFTHPNE (Extensive form trembling hand perfect equilibrium), 36
Eigen decomposition, 46
Eigenvalue, 46
Eigenvector, 46
Eigenvector, eigenvalue, 46
Elasticity, 44
Elasticity of intertemporal substitution, 40
EMP (expenditure minimization problem), 31
Empirical distribution, 11
Endowment economy, Arrow-Debreu, 39
Endowment economy, sequential markets, 39
Engle curve, 32
English auction, 37
Entry deterrence, 37
Envelope theorem, 30
Envelope theorem (integral form), 30
Equilibrium dominance, 37
Equivalence relation, 45
Equivalent variation, 32
Ergodic stationary martingale differences CLT, 16
Ergodic Theorem, 16
Ergodicity, 16
Estimating AR(p), 17
Estimating S, 18
Estimating number of lags, 17
Estimator, 11
Euclidean norm, 41
Euler’s law, 44
EV (equivalent variation), 32
Excess demand, 34
Expected utility function, 32
Expected value, mean, 6
Expenditure function, 31
Expenditure minimization problem, 31
Exponential families, 8

Extensive form trembling hand perfection, 36
Extremum estimator, 11

F distribution, 8
F test, 19
Factorial moment generating function, 7
Factorization theorem, 11
FCLT (Function Central Limit Theorem), 24
Feasible allocation, 33
Feasible generalized least squares, 19
Feasible payoff, 37
FGLS (Feasible Generalized Least Squares), 19
FIML (Full Information Maximum Likelihood), 23
Finitely repeated game, 37
First Welfare Theorem, 33, 41
First-order ancillary statistic, 11
First-order stochastic dominance, 33
First-price sealed bid auction, 37
Fisher Information, 10, 14
Fisher Information Equality, 14
Fitted value, 18
FIVE (Full-Information Instrumental Variables Efficient), 21
Folk Theorem, 37
Free disposal, 28
Frisch-Waugh Theorem, 19
Full Information Maximum Likelihood, 23
Full-Information Instrumental Variables Efficient, 21
Function, 45
Function Central Limit Theorem, 24
FWL (Frisch-Waugh-Lovell) Theorem, 19

Gale-Shapley algorithm, 38
Game tree, 34
Gamma function, 45
GARCH process, 17
GARP (Generalized Axiom of Revealed Preference), 27
Gauss-Markov theorem, 18
Gaussian distribution, 7
Gaussian regression model, 11
General equilibrium, 40
Generalized Axiom of Revealed Preference, 27
Generalized least squares, 19
Generalized Method of Moments estimator, 13
Generalized Tobit model, 25
Geometric series, 45
Gibbard-Satterthwaite Theorem, 39
Giffen good, 31
GLS (Generalized Least Squares), 19
GMM (Generalized Method of Moments), 13, 19
GMM hypothesis testing, 20
Gordin’s CLT, 16
Gordin’s condition, 16
Gorman form, 32
Granger causality, 44
“Grim trigger” strategy, 37
Gross complement, 32
Gross substitute, 32

51



Gross substitutes property, 34
Groves mechanism, 39
GS (Gale-Shapley) algorithm, 38
GS (Gibbard-Satterthwaite) Theorem, 39

Hölder’s Inequality, 25
Hall’s martingale hypothesis, 43
Hamiltonian, 42
Hansen’s test of overidentifying restrictions, 20
HARP (Houthaker’s Axiom of Revealed Preferences), 27
Hausman Principle, 14
Heckman two-step, 25
Herfindahl-Hirshman index, 36
Heteroscedasticity robust asymptotic variance matrix, 11
Heteroscedasticity-robust standard error, 18
Hicksian demand correspondence, 31
Holmstrom’s Lemma, 30
Homothetic preference, 28
Hotelling spatial location model, 36
Hotelling’s Lemma, 29
Houthaker’s Axiom of Revealed Preferences, 27
Hyperbolic discounting, 43
Hypothesis testing, 14

I(0) process, 24
I(1) process, 24
I(d) process, 24
ID (increasing differences), 30
Ideal index, 32
Idempotent matrix, 47
Identification, 10
Identification in exponential families, 10
IEoS (intertemporal elasticity of substitution), 40
Imperfect competition model, 40
Imperfect competition: final goods, 40
Imperfect competition: intermediate goods, 40
Imperfect information, 34
Implicit function theorem, 30
Inada conditions, 40
Income expansion curve, 32
Incomplete information, 34
Incomplete markets, 34
Incomplete markets: finite horizon, 43
Incomplete markets: infinite horizon, 43
Increasing differences, 30
Independence of events, 4
Independence of r.v.s, 5
Independence of random vectors, 5
Independent, 4, 5
Indirect utility function, 31
Individually rational payoff, 37
Inferior good, 31
Infimum limit, 45
Infinitely repeated game, 37
Information Equality, 14
Injective, 45
Inner bound, 29

Instrumental variables estimator, 20
Integrated process of order d, 24
Integrated process of order 0, 24
Intereuler equation, 40
Interpersonal comparison, 28
Intertemporal elasticity of substitution, 40
Intertemporal Euler equation, 40
Irreflexive, 45
Iterated deletion of dominated strategies, 35
Iterated expectations, 6
IV (instrumental variables) estimator, 20

J statistic, 20
Jacobian, 6
Jensen’s Inequality, 25
JGLS (Joint Generalized Least Squares), 22
Join, 44
Joint cdf, 5
Joint Generalized Least Squares, 22
Joint pdf, 5
Joint pmf, 5

Kakutani’s Fixed Point Theorem, 46
Kocherlakota two-sided lack of commitment model, 43
Kolmogorov Axioms or Axioms of Probability, 4
Kronecker product, 47
Kuhn’s Theorem, 35
Kullback-Liebler Divergence, 12
Kurtosis, 7

Lag operator, 16
Lagrange multiplier statistic, 15
Landau symbols, 9, 10
Laspeyres index, 32
Law of Iterated Expectations, 6
Law of Large Numbers for covariance-stationary processes with vanishing autocovariances, 15
Law of Large Numbers for ergodic processes (Ergodic Theorem), 16
Law of Large Numbers for iid samples, 9, 10
Law of Large Numbers for niid samples, 10
Law of Supply, 29
LeChatelier principle, 30
Lehmann-Scheffé Theorem, 14
Lerner index, 36
Level, 14
Lexicographic preferences, 28
lhc (lower hemi-continuity), 46
Likelihood function, 11
Likelihood ratio test, 15
lim inf, 45
lim sup, 45
Limited Information Maximum Likelihood, 24
Limiting size, 15
LIML (Limited Information Maximum Likelihood), 24
Lindeberg-Levy CLT, 10
Linear GMM estimator, 20
Linear GMM model, 19
Linear independence, rank, 46
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Linear instrumental variables, 11
Linear multiple-equation GMM estimator, 21
Linear multiple-equation GMM model, 21
Linear regression model with non-stochastic covariates, 11
Linearization in continuous time, 42
Little o error notation, 9
LLN (Law of Large Numbers) for covariance-stationary processes with vanishing autocovariances,

15
LLN (Law of Large Numbers) for ergodic processes (Ergodic Theorem), 16
LLN (Law of Large Numbers) for iid samples, 9
Local level model, 17
Locally non-satiated preference, 28
Location and Scale families, 8
Log-linearization, 42
Logistic function, 45
Logit model, 24
Lognormal distribution, 8
Long-run variance, 16
Loss function, 14, 29
Lottery, 32
Lower hemi-continuity, 46
Lower semi-continuity, 46
lsc (lower semi-continuity), 46
Lucas cost of busines cycles, 43
Lucas supply function, 44
Lucas tree, 42
Lyapounov’s Theorem, 10

M-estimator, 12
MA (moving average) process, 16
Maintained hypothesis, 14
Marginal pdf, 5
Marginal pmf, 5
Marginal rate of substitution, 31
Marginal rate of technological substitution, 28
Marginal rate of transformation, 28
Marginal utility of wealth, 31
Markov process, 42
Markov’s Inequality, 25
Marshallian consumer surplus, 32
Marshallian demand correspondence, 31
Martingale, 16
Martingale difference sequence, 16
Matrix, 46
Matrix derivatives, 47
Matrix inverse, 46
Matrix multiplication, 46
Matrix squareroot, 46
Matrix transpose, 46
Maximum Likelihood estimator, 12
Maximum likelihood estimator for OLS model, 18
Maximum likelihood for SUR, 23
Maximum likelihood with serial correlation, 17
May’s Theorem, 39
MCS (monotone comparative statics), 30
MCS: robustness to objective function perturbation, 30
mds (martingale difference sequence), 16

Mean independence, 5
Mean squared error risk function, 14
Mean value expansion, 45
Measurability, 5
Median, 6
Meet, 44
Method of Moments estimator, 13
Metric space, 41
mgf (moment generating function), 7
Milgrom-Shannon, 30
Milgrom-Shannon Monotonicity Theorem, 30
Minimal sufficient statistic, 11
Minimum Distance estimator, 13
Minkowski’s Inequality, 25
Mixed strategy Nash equilibrium, 35
MLE (Maximum Likelihood estimator), 12
MLR (monotone likelihood ratio), 15
Mode, 6
Moment, 7
Moment generating function, 7
Monopolistic competition, 36
Monopoly pricing, 29
Monotone, 45
Monotone comparative statics, 30
Monotone likelihood ratio models, 15
Monotone preference, 28
Monotone Selection Theorem, 30
Monotonicity, 39
Moral hazard, 38
Moving average process, 16
MRS (marginal rate of substitution), 31
MRT (marginal rate of transformation), 28
MRTS (marginal rate of technological substitution), 28
MSE (mean squared error), 14
MSNE (mixed strategy Nash equilibrium), 35
Multiple equation 2SLS (Two-Stage Least Squares), 22
Multiple equation TSLS (Two-Stage Least Squares), 22
Multiple equation Two-Stage Least Squares, 22
Multiple-equation GMM with common coefficients, 22
Multivariate covariance, 7
Multivariate normal distribution, 8
Multivariate regression, 22
Multivariate variance, 7
Mutual exclusivity, 4
Mutual independence of events, 4

Nash reversion, 37
Natural parameter space, 8
NCGM (neoclassical growth model), 39
NCGM in continuous time, 42
Negative transitive, 45
Neoclassical growth model (discrete time), 39
Neutrality, 39
Neyman-Pearson Lemma, 14
NLS (nonlinear least squares), 11
No Ponzi condition, 41
Nondecreasing returns to scale, 28
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Nonincreasing returns to scale, 28
Nonlinear least squares, 11
Nonsingularity, 46
Nontransferable utility game, 38
Normal distribution, 7
Normal equations, 18
Normal form, 34
Normal good, 31
Normative representative consumer, 32
Normed vector space, 41
NPL (Neyman-Pearson Lemma), 14
NTU (nontransferable utility) game, 38
Null hypothesis, 14
Numerical inequality lemma, 25

O error notation, 10
o error notation, 9
Observational equivalence, 10
Offer curve, 32, 33
Okun’s Law, 44
OLG (overlapping generations), 40
OLS F test, 19
OLS R2, 18
OLS t test, 18
OLS (ordinary least squares), 17
OLS residual, 18
OLS robust t test, 19
OLS robust Wald statistic, 19
One-sided lack of commitment, 43
One-sided matching, 38
One-to-one, 45
Onto, 45
Optimal taxation—primal approach, 40
Order statistic, 9
Order symbols, 10
Ordinary least squares estimators, 18
Ordinary least squares model, 17
Orthants of Euclidean space, 44
Orthogonal completion, 47
Orthogonal decomposition, 46
Orthogonal matrix, 46
Other generating functions, 7
Outer bound, 29
Overlapping generations, 40
Overtaking criterion, 37

p-value, 14
Paasche index, 32
Parameter, 10
Parametric model, 10
Pareto optimality, 33
Pareto set, 33
Partition, 4, 45
Partitioned matrices, 47
Payoff function, 34
PBE (perfect Bayesian equilibrium), 36
pdf (probability density function), 5

PE (Pareto efficiency), 33
Perfect Bayesian equilibrium, 36
Perfect information, 34
Perfect recall, 34
Philips Curve, 44
Pivotal mechanism, 39
pmf (probability mass function), 5
PO (Pareto optimality), 33
Point identification, 10
Pooled OLS, 23
Portfolio problem, 33
Positive definiteness, &c., 47
Positive representative consumer, 32
Power, 14
Power series, 45
Preference axioms under uncertainty, 32
Price expansion path, 32
Price index, 32
Primal approach to optimal taxation, 40
Principle of Optimality, 41
Probability density function, 5
Probability function, 4
Probability integral transformation, 6
Probability mass function, 5
Probability space, 4
Probability-generating function, 7
Probit model, 11, 24
Producer Surplus Formula, 29
Production economy, Arrow-Debreu, 40
Production economy, sequential markets, 40
Production function, 28
Production plan, 28
Production set, 28
Profit maximization, 28
Projection matrix, 18
Proper subgame, 35
“The Property”, 26
Proportionate gamble, 33
PSF (Producer Surplus Formula), 29
PSNE (pure strategy Nash equilibrium), 35
Public good, 37
Pure strategy Nash equilibrium, 35

Quadrants of Euclidean space, 44
Quadratic loss, 14
Quasi-linear preferences, 28

R2, 18
Ramsey equilibrium, 41
Ramsey model, 39
Random effects estimator, 23
Random sample, iid, 9
Random variable, 5
Random vector, 5
Random walk, 16
Rank, 46
Rao-Blackwell Theorem, 14
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Rational expectations equilibrium, 34
Rational expectations models, 44
Rational preference relation, 27
Rationalizable strategy, 35
Rationalization: h and differentiable e, 31
Rationalization: y(·) and differentiable π(·), 29
Rationalization: differentiable π(·), 29
Rationalization: differentiable e, 31
Rationalization: differentiable h, 31
Rationalization: differentiable x, 31
Rationalization: differentiable y(·), 29
Rationalization: general y(·) and π(·), 29
Rationalization: profit maximization functions, 28
Rationalization: single-output cost function, 29
RBC (Real Business Cycles) model, 40
RE (random effects) estimator, 23
Real Business Cycles model, 40
Reduced form, 23
REE (rational expectations equilibrium), 34
Reflexive, 45
Regression, 6
Regression model, 11
Regular good, 31
Relating Marshallian and Hicksian demand, 31
Relative risk aversion, 33
Revealed preference, 27
Revelation principle, 34
Revenue equivalence theorem, 37
Risk aversion, 32
Risk function, 14
Risk-free bond pricing, 42
Robust standard error, 18
Robust t test, 19
Robust Wald statistic, 19
Roy’s identity, 32
RRA (relative risk aversion), 33
rXY (sample correlation), 9

s2 (sample variance), 9
Sample correlation, 9
Sample covariance, 9
Sample mean, 9
Sample median, 9
Sample selection model, 25
Sample standard deviation, 9
Sample variance, 9
Samples from the normal distribution, 9
Sampling error, 18
Samuelson-LeChatelier principle, 30
Scedastic function, 7
Score, 14
Screening, 38
SE (sequential equilibrium), 36
Second Welfare Theorem, 34
Second-order stochastic dominance, 33
Second-price auction, 37
SEE (standard error of the equation), 18

Seemingly Unrelated Regressions, 11, 22
Separable preferences, 28
Sequential competition, 36
Sequential equilibrium, 36
Sequentially rational strategy, 36
SER (standard error of the regression), 18
Shadow price of wealth, 31
Shapley value, 38
Shephard’s Lemma, 29, 31
Short and long regressions, 19
Shutdown, 28
SID (strictly increasing differences), 30
Sigma algebra, 4
Signaling, 37, 38
Simple game, 38
Simple likelihood ratio statistic, 14
Single-crossing condition, 30
Single-output case, 29
Singularity, 46
Size, 14
Skewness, 7
Slutsky equation, 31
Slutsky matrix, 31
Slutsky’s Theorem, 10
SM (supermodularity), 30
Smallest σ-field, 5
Snedecor’s F distribution, 8
Sonnenschein-Mantel-Debreu Theorem, 34
Spectral decomposition, 46
Spence signaling model, 37, 38
SPNE (subgame perfect Nash equilibrium), 36
Square matrix, 46
SSO (strong set order), 44
Stable distribution, 8
Stage game, 37
Standard deviation, 7
Standard error, 18
Standard error of the regression, 18
“Stars and bars”, 4
Stationarity, 15
Statistic, 9
Statistics in exponential families, 11
Stein’s Lemma, 7
Stick-and-carrot equilibrium, 37
Stochastic ordering, 5
Stock pricing, 43
Strategy, 34
Strict dominance, 35
Strict stationarity, 15
Strictly increasing differences, 30
Strictly mixed strategy, 35
Strong Law of Large Numbers, 9, 10
Strong set order, 44
Strongly increasing differences, 30
Structural form, 23
Student’s t distribution, 8
Subgame perfect Nash equilibrium, 36
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Subjective probabilities, 33
Sublattice, 44
Submodularity, 30
Substitute goods, 31
Substitute inputs, 30
Substitution matrix, 29
Sufficient statistic, 11
Sum of powers, 44
Sup norm, 41
Superconsistent estimator, 11
Supergame, 37
Supermodularity, 30
Support, 5
Support set, 5
Supremum limit, 45
Supremum norm (Rn), 41
Supremum norm (real-valued functions), 41
SUR (seemingly unrelated regressions), 11, 22
Sure thing principle, 32
Surjective, 45
sXY (sample covariance), 9
Symmetric, 45
Symmetric distribution, 6
Symmetric matrix, 46
System of beliefs, 35

t distribution, 8
t test, 18
Taylor Rule, 44
Taylor series, 45
Taylor series examples, 45
Test function, 14
Test statistic, 14
Testing overidentifying restrictions, 20
THPE (trembling-hand perfect equilibrium), 35
Three-Stage Least Squares, 22
Threshold crossing model, 11
Time inconsistency, 44
Tobit model, 25
Top Trading Cycles algorithm, 38
Topkis’ Theorem, 30
Trace, 46
Transferable utility game, 38
Transformation R1 → R1, 6
Transformation R2 → R2, 6
Transformation frontier, 28
Transformation function, 28
Transitive, 45
Transitivity, 27
Transpose, 46
Transversality condition, 41
Trembling-hand perfection, 35
Truncated response model, 25
TSLS (Three-Stage Least Squares), 22
TSLS (Two-Stage Least Squares), 21
TU (transferable utility) game, 38
TVC (transversality condition), 41

Two period intertemporal choice model, 39
Two-sided lack of commitment, 43
Two-sided matching, 38
Two-Stage Least Squares, 21
Two-way rule for expectations, 6
Type I/Type II error, 14

uhc (upper hemi-continuity), 46
ULLN (Uniform Law of Large Numbers), 12
UMP (uniformly most powerful) test, 14
UMP (utility maximization problem), 31
UMPU (uniformly most powerful unbiased) test, 15
UMVUE (uniformly minimum variance unbiased estimator), 13
Unanimity, 39
Unbiased estimator, 9
Unbiased test, 15
Uncertainty: general setup, 42
Uncompensated demand correspondence, 31
Uniform (Weak) Law of Large Numbers, 12
Uniform convergence in probability, 9
Uniformly minimum variance unbiased estimator, 13
Uniformly most powerful test, 14
Uniformly most powerful unbiased test, 15
Unimodality, 6
Unit root process, 24
Upper hemi-continuity, 46
Upper semi-continuity, 46
usc (upper semi-continuity), 46
Utility function, 27
Utility maximization problem, 31

Variance, 7
Variance of residuals, 18
VCG (Vickrey-Clarke-Groves) mechanism, 39
Veto player, 38
Vickrey auction, 37
Vickrey-Clarke-Groves mechanism, 39
von Neumann-Morgenstern utility function, 32
Voting rule, 39

Wald statistic, 15
Walras’ Law, 31
Walrasian demand correspondence, 31
Walrasian equilibrium, 33
Walrasian model, 33
WAPM (Weak Axiom of Profit Maximization), 29
WARP (Weak Axiom of Revealed Preference), 27
WE (Walrasian equilibrium), 33
Weak Axiom of Profit Maximization, 29
Weak Axiom of Revealed Preference, 27
Weak dominance, 35
Weak Law of Large Numbers, 9
Weak perfect Bayesian equilibrium, 36
Weak stationarity, 15
Weakly dominated strategy, 35
Weakly increasing differences, 30
Weighted least squares, 19
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White noise, 16
White’s standard error, 18
WID (weakly increasing differences), 30
Wiener process, 24
WLS (Weighted Least Squares), 19
WPBE (weak perfect Bayesian equilibrium), 36

X̄ (sample mean), 9

Zermelo’s Theorem, 35
0-1 loss, 14
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